/** This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation. If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence: "This work benefited from DANSE software developed under NSF award DMR-0520547." copyright 2008, University of Tennessee */ /** * Scattering model classes * The classes use the IGOR library found in * sansmodels/src/libigor * */ #include #include "parameters.hh" #include using namespace std; extern "C" { #include "GaussWeights.h" #include "libCylinder.h" } #include "capcyl.h" // Convenience parameter structure typedef struct { double scale; double rad_cyl; double len_cyl; double rad_cap; double sld_capcyl; double sld_solv; double background; double theta; double phi; } CapCylParameters; CappedCylinderModel :: CappedCylinderModel() { scale = Parameter(1.0); rad_cyl = Parameter(20.0); rad_cyl.set_min(0.0); len_cyl = Parameter(400.0, true); len_cyl.set_min(0.0); rad_cap = Parameter(40.0); rad_cap.set_min(0.0); sld_capcyl = Parameter(1.0e-6); sld_solv = Parameter(6.3e-6); background = Parameter(0.0); theta = Parameter(0.0, true); phi = Parameter(0.0, true); } static double capcyl2d_kernel(double dp[], double q, double alpha) { int j; double Pi; double scale,contr,bkg,sldc,slds; double len,rad,hDist,endRad; int nordj=76; double zi=alpha,yyy,answer; //running tally of integration double summj,vaj,vbj,zij; //for the inner integration double arg1,arg2,inner,be; scale = dp[0]; rad = dp[1]; len = dp[2]; endRad = dp[3]; sldc = dp[4]; slds = dp[5]; bkg = dp[6]; hDist = -1.0*sqrt(fabs(endRad*endRad-rad*rad)); //by definition for this model contr = sldc-slds; Pi = 4.0*atan(1.0); vaj = -1.0*hDist/endRad; vbj = 1.0; //endpoints of inner integral summj=0.0; for(j=0;j0 summj += yyy; } //now calculate the value of the inner integral inner = (vbj-vaj)/2.0*summj; inner *= 4.0*Pi*endRad*endRad*endRad; //now calculate outer integrand arg1 = q*len/2.0*cos(zi); arg2 = q*rad*sin(zi); yyy = inner; if(arg2 == 0) { be = 0.5; } else { be = NR_BessJ1(arg2)/arg2; } if(arg1 == 0.0) { //limiting value of sinc(0) is 1; sinc is not defined in math.h yyy += Pi*rad*rad*len*2.0*be; } else { yyy += Pi*rad*rad*len*sin(arg1)/arg1*2.0*be; } yyy *= yyy; //sin(zi); answer = yyy; answer /= Pi*rad*rad*len + 2.0*Pi*(2.0*endRad*endRad*endRad/3.0+endRad*endRad*hDist-hDist*hDist*hDist/3.0); //divide by volume answer *= 1.0e8; //convert to cm^-1 answer *= contr*contr; answer *= scale; answer += bkg; return answer; } /** * Function to evaluate 2D scattering function * @param pars: parameters of the BarBell * @param q: q-value * @param q_x: q_x / q * @param q_y: q_y / q * @return: function value */ static double capcyl_analytical_2D_scaled(CapCylParameters *pars, double q, double q_x, double q_y) { double cyl_x, cyl_y, cyl_z; double q_z; double alpha, cos_val; double answer; double dp[7]; //convert angle degree to radian double pi = 4.0*atan(1.0); double theta = pars->theta * pi/180.0; double phi = pars->phi * pi/180.0; dp[0] = pars->scale; dp[1] = pars->rad_cyl; dp[2] = pars->len_cyl; dp[3] = pars->rad_cap; dp[4] = pars->sld_capcyl; dp[5] = pars->sld_solv; dp[6] = pars->background; //double Pi = 4.0*atan(1.0); // Cylinder orientation cyl_x = sin(theta) * cos(phi); cyl_y = sin(theta) * sin(phi); cyl_z = cos(theta); // q vector q_z = 0; // Compute the angle btw vector q and the // axis of the cylinder cos_val = cyl_x*q_x + cyl_y*q_y + cyl_z*q_z; // The following test should always pass if (fabs(cos_val)>1.0) { printf("cyl_ana_2D: Unexpected error: cos(alpha)>1\n"); return 0; } // Note: cos(alpha) = 0 and 1 will get an // undefined value from CylKernel alpha = acos( cos_val ); // Call the IGOR library function to get the kernel answer = capcyl2d_kernel(dp, q, alpha)/sin(alpha); return answer; } /** * Function to evaluate 2D scattering function * @param pars: parameters of the BarBell * @param q: q-value * @return: function value */ static double capcyl_analytical_2DXY(CapCylParameters *pars, double qx, double qy){ double q; q = sqrt(qx*qx+qy*qy); return capcyl_analytical_2D_scaled(pars, q, qx/q, qy/q); } /** * Function to evaluate 1D scattering function * The NIST IGOR library is used for the actual calculation. * @param q: q-value * @return: function value */ double CappedCylinderModel :: operator()(double q) { double dp[7]; // Fill parameter array for IGOR library // Add the background after averaging dp[0] = scale(); dp[1] = rad_cyl(); dp[2] = len_cyl(); dp[3] = rad_cap(); dp[4] = sld_capcyl(); dp[5] = sld_solv(); dp[6] = 0.0; // Get the dispersion points for the rad_cyl vector weights_rad_cyl; rad_cyl.get_weights(weights_rad_cyl); // Get the dispersion points for the len_cyl vector weights_len_cyl; len_cyl.get_weights(weights_len_cyl); // Get the dispersion points for the rad_cap vector weights_rad_cap; rad_cap.get_weights(weights_rad_cap); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; double vol = 0.0; double pi,hDist,result; double vol_i = 0.0; pi = 4.0*atan(1.0); // Loop over radius weight points for(size_t i=0; i weights_rad_cyl; rad_cyl.get_weights(weights_rad_cyl); // Get the dispersion points for the len_bar vector weights_len_cyl; len_cyl.get_weights(weights_len_cyl); // Get the dispersion points for the rad_bell vector weights_rad_cap; rad_cap.get_weights(weights_rad_cap); // Get angular averaging for theta vector weights_theta; theta.get_weights(weights_theta); // Get angular averaging for phi vector weights_phi; phi.get_weights(weights_phi); // Perform the computation, with all weight points double sum = 0.0; double norm = 0.0; double norm_vol = 0.0; double vol = 0.0; double pi,hDist; double vol_i = 0.0; pi = 4.0*atan(1.0); // Loop over radius weight points for(size_t i=0; i1) { _ptvalue *= fabs(sin(weights_theta[l].value*pi/180.0)); } sum += _ptvalue; // This model dose not need the volume of spheres correction!!! //Find average volume vol += weights_rad_cyl[i].weight * weights_len_cyl[j].weight * weights_rad_cap[k].weight * vol_i; //Find norm for volume norm_vol += weights_rad_cyl[i].weight * weights_len_cyl[j].weight * weights_rad_cap[k].weight; norm += weights_rad_cyl[i].weight * weights_len_cyl[j].weight * weights_rad_cap[k].weight * weights_theta[l].weight * weights_phi[m].weight; } } } } } // Averaging in theta needs an extra normalization // factor to account for the sin(theta) term in the // integration (see documentation). if (weights_theta.size()>1) norm = norm / asin(1.0); if (vol != 0.0 && norm_vol != 0.0) { //Re-normalize by avg volume sum = sum/(vol/norm_vol);} return sum/norm + background(); } /** * Function to evaluate 2D scattering function * @param pars: parameters of the SCCrystal * @param q: q-value * @param phi: angle phi * @return: function value */ double CappedCylinderModel :: evaluate_rphi(double q, double phi) { return (*this).operator()(q); } /** * Function to calculate effective radius * @return: effective radius value */ double CappedCylinderModel :: calculate_ER() { //NOT implemented yet!!! return 0.0; } double CappedCylinderModel :: calculate_VR() { return 1.0; }