/** CSimCylinder * * C extension * * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY * DO NOT MODIFY THIS FILE, MODIFY simcylinder.h * AND RE-RUN THE GENERATOR SCRIPT * * @author M.Doucet / UTK */ #include #include "structmember.h" #include #include #include #include #include "simcylinder.h" static double UNDEFINED = 1000010010.1234567; /// Error object for raised exceptions static PyObject * CSimCylinderError = NULL; // Class definition typedef struct { PyObject_HEAD /// Parameters PyObject * params; /// Log for unit testing PyObject * log; /// Model parameters SimCylinderParameters model_pars; } CSimCylinder; static void CSimCylinder_dealloc(CSimCylinder* self) { modelcalculations_dealloc(&(self->model_pars.calcPars)); self->ob_type->tp_free((PyObject*)self); } static PyObject * CSimCylinder_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { CSimCylinder *self; self = (CSimCylinder *)type->tp_alloc(type, 0); return (PyObject *)self; } static int CSimCylinder_init(CSimCylinder *self, PyObject *args, PyObject *kwds) { if (self != NULL) { // Create parameters self->params = PyDict_New(); // Initialize parameter dictionary PyDict_SetItemString(self->params,"phi",Py_BuildValue("d",0.000000)); PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.000000)); PyDict_SetItemString(self->params,"qmax",Py_BuildValue("d",0.200000)); PyDict_SetItemString(self->params,"length",Py_BuildValue("d",200.000000)); PyDict_SetItemString(self->params,"radius",Py_BuildValue("d",80.000000)); PyDict_SetItemString(self->params,"theta",Py_BuildValue("d",1.570000)); // Create empty log self->log = PyDict_New(); modelcalculations_init(&(self->model_pars.calcPars)); } return 0; } static PyMemberDef CSimCylinder_members[] = { {"params", T_OBJECT, offsetof(CSimCylinder, params), 0, "Parameters"}, {"log", T_OBJECT, offsetof(CSimCylinder, log), 0, "Log"}, {NULL} /* Sentinel */ }; /** Read double from PyObject @param p PyObject @return double */ double CSimCylinder_readDouble(PyObject *p) { if (PyFloat_Check(p)==1) { return (double)(((PyFloatObject *)(p))->ob_fval); } else if (PyInt_Check(p)==1) { return (double)(((PyIntObject *)(p))->ob_ival); } else if (PyLong_Check(p)==1) { return (double)PyLong_AsLong(p); } else { return 0.0; } } /** * Function to call to evaluate model * @param args: input q or [q,phi] * @return: function value */ static PyObject * run(CSimCylinder *self, PyObject *args) { double q_value, phi_value; PyObject* pars; int npars; // Get parameters // Reader parameter dictionary self->model_pars.phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "phi") ); self->model_pars.scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") ); self->model_pars.qmax = PyFloat_AsDouble( PyDict_GetItemString(self->params, "qmax") ); self->model_pars.length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") ); self->model_pars.radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius") ); self->model_pars.theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "theta") ); // Get input and determine whether we have to supply a 1D or 2D return value. if ( !PyArg_ParseTuple(args,"O",&pars) ) { PyErr_SetString(CSimCylinderError, "CSimCylinder.run expects a q value."); return NULL; } // Check params if( PyList_Check(pars)==1) { // Length of list should be 2 for I(q,phi) npars = PyList_GET_SIZE(pars); if(npars!=2) { PyErr_SetString(CSimCylinderError, "CSimCylinder.run expects a double or a list of dimension 2."); return NULL; } // We have a vector q, get the q and phi values at which // to evaluate I(q,phi) q_value = CSimCylinder_readDouble(PyList_GET_ITEM(pars,0)); phi_value = CSimCylinder_readDouble(PyList_GET_ITEM(pars,1)); // Skip zero if (q_value==0) { return Py_BuildValue("d",0.0); } return Py_BuildValue("d",simcylinder_analytical_2D(&(self->model_pars),q_value,phi_value)); } else { // We have a scalar q, we will evaluate I(q) q_value = CSimCylinder_readDouble(pars); return Py_BuildValue("d",simcylinder_analytical_1D(&(self->model_pars),q_value)); } } static PyObject * reset(CSimCylinder *self, PyObject *args) { modelcalculations_reset(&(self->model_pars.calcPars)); return Py_BuildValue("d",0.0); } static PyMethodDef CSimCylinder_methods[] = { {"run", (PyCFunction)run , METH_VARARGS, "Evaluate the model at a given Q"}, {"reset", (PyCFunction)reset , METH_VARARGS, "Reset pair correlation"}, //{"numerical_1D", (PyCFunction)numerical_1D , METH_VARARGS, // "Evaluate the 1D model at a given Q"}, {NULL} }; static PyTypeObject CSimCylinderType = { PyObject_HEAD_INIT(NULL) 0, /*ob_size*/ "CSimCylinder", /*tp_name*/ sizeof(CSimCylinder), /*tp_basicsize*/ 0, /*tp_itemsize*/ (destructor)CSimCylinder_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash */ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/ "CSimCylinder objects", /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ CSimCylinder_methods, /* tp_methods */ CSimCylinder_members, /* tp_members */ 0, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ (initproc)CSimCylinder_init, /* tp_init */ 0, /* tp_alloc */ CSimCylinder_new, /* tp_new */ }; static PyMethodDef module_methods[] = { {NULL} }; /** * Function used to add the model class to a module * @param module: module to add the class to */ void addCSimCylinder(PyObject *module) { PyObject *d; if (PyType_Ready(&CSimCylinderType) < 0) return; Py_INCREF(&CSimCylinderType); PyModule_AddObject(module, "CSimCylinder", (PyObject *)&CSimCylinderType); d = PyModule_GetDict(module); CSimCylinderError = PyErr_NewException("CSimCylinder.error", NULL, NULL); PyDict_SetItemString(d, "CSimCylinderError", CSimCylinderError); }