ModelAdaptor

sans.models.ModelAdaptor

This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation.

If you use DANSE applications to do scientific research that leads to publication, we ask that you acknowledge the use of the software with the following sentence:

“This work benefited from DANSE software developed under NSF award DMR-0520547.”

copyright 2008, University of Tennessee

class sans.models.ModelAdaptor.ModelAdaptor

Bases: object

Model adaptor to provide old-style model functionality

__add__()
__class__

alias of type

__delattr__

x.__delattr__(‘name’) <==> del x.name

__dict__ = <dictproxy object at 0x01B548F0>
__div__()
__getattribute__

x.__getattribute__(‘name’) <==> x.name

__hash__

x.__hash__() <==> hash(x)

__init__()

Initialization

__module__ = 'sans.models.ModelAdaptor'
__mul__()
static __new__(S, ...) → a new object with type S, a subtype of T
__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

x.__repr__() <==> repr(x)

__setattr__

x.__setattr__(‘name’, value) <==> x.name = value

__str__

x.__str__() <==> str(x)

__sub__()
__weakref__

list of weak references to the object (if defined)

getParamListWithToken()
getParamWithToken()
setParamWithToken()
class sans.models.ModelAdaptor.ParameterDict

Bases: dict

Parameter dictionary used for backward compatibility between the old-style ‘params’ dictionary and the new-style ‘parameters’ dictionary.

__class__

alias of type

__cmp__

x.__cmp__(y) <==> cmp(x,y)

__contains__(k) → True if D has a key k, else False
__delattr__

x.__delattr__(‘name’) <==> del x.name

__delitem__

x.__delitem__(y) <==> del x[y]

__dict__ = <dictproxy object at 0x0223D470>
__eq__

x.__eq__(y) <==> x==y

__ge__

x.__ge__(y) <==> x>=y

__getattribute__

x.__getattribute__(‘name’) <==> x.name

__getitem__()
__gt__

x.__gt__(y) <==> x>y

__hash__

x.__hash__() <==> hash(x)

__init__()

Initialization @param parameters: new-style ‘parameters’ dictionary

__iter__

x.__iter__() <==> iter(x)

__le__

x.__le__(y) <==> x<=y

__len__

x.__len__() <==> len(x)

__lt__

x.__lt__(y) <==> x<y

__module__ = 'sans.models.ModelAdaptor'
__ne__

x.__ne__(y) <==> x!=y

static __new__(S, ...) → a new object with type S, a subtype of T
__reduce__()

helper for pickle

__reduce_ex__()

helper for pickle

__repr__

x.__repr__() <==> repr(x)

__setattr__

x.__setattr__(‘name’, value) <==> x.name = value

__setitem__()
__str__

x.__str__() <==> str(x)

__weakref__

list of weak references to the object (if defined)

clear() → None. Remove all items from D.
copy() → a shallow copy of D
static fromkeys(S[, v]) → New dict with keys from S and values equal to v.

v defaults to None.

get(k[, d]) → D[k] if k in D, else d. d defaults to None.
has_key(k) → True if D has a key k, else False
items() → list of D's (key, value) pairs, as 2-tuples
iteritems() → an iterator over the (key, value) items of D
iterkeys() → an iterator over the keys of D
itervalues() → an iterator over the values of D
keys() → list of D's keys
pop(k[, d]) → v, remove specified key and return the corresponding value

If key is not found, d is returned if given, otherwise KeyError is raised

popitem() → (k, v), remove and return some (key, value) pair as a

2-tuple; but raise KeyError if D is empty

setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D
update(E, **F) → None. Update D from E and F: for k in E: D[k] = E[k]

(if E has keys else: for (k, v) in E: D[k] = v) then: for k in F: D[k] = F[k]

values() → list of D's values

Table Of Contents

Previous topic

LorentzModel

Next topic

ModelFactory

This Page