#include #include "structmember.h" #include #include #include #include #include "invertor.h" /// Error object for raised exceptions static PyObject * CinvertorError = NULL; #define INVECTOR(obj,buf,len) \ do { \ int err = PyObject_AsReadBuffer(obj, (const void **)(&buf), &len); \ if (err < 0) return NULL; \ len /= sizeof(*buf); \ } while (0) #define OUTVECTOR(obj,buf,len) \ do { \ int err = PyObject_AsWriteBuffer(obj, (void **)(&buf), &len); \ if (err < 0) return NULL; \ len /= sizeof(*buf); \ } while (0) // Class definition typedef struct { PyObject_HEAD Invertor_params params; } Cinvertor; static void Cinvertor_dealloc(Cinvertor* self) { invertor_dealloc(&(self->params)); self->ob_type->tp_free((PyObject*)self); } static PyObject * Cinvertor_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { Cinvertor *self; self = (Cinvertor *)type->tp_alloc(type, 0); return (PyObject *)self; } static int Cinvertor_init(Cinvertor *self, PyObject *args, PyObject *kwds) { if (self != NULL) { // Create parameters invertor_init(&(self->params)); } return 0; } static PyMemberDef Cinvertor_members[] = { //{"params", T_OBJECT, offsetof(Cinvertor, params), 0, // "Parameters"}, {NULL} /* Sentinel */ }; /** * Function to set the x data * Takes an array of doubles as input * Returns the number of entries found */ static PyObject * set_x(Cinvertor *self, PyObject *args) { PyObject *data_obj; Py_ssize_t ndata; double *data; if (!PyArg_ParseTuple(args, "O", &data_obj)) return NULL; OUTVECTOR(data_obj,data,ndata); self->params.x = data; self->params.npoints = ndata; return Py_BuildValue("i", self->params.npoints); } static PyObject * get_x(Cinvertor *self, PyObject *args) { PyObject *data_obj; Py_ssize_t ndata; double *data; int i; if (!PyArg_ParseTuple(args, "O", &data_obj)) return NULL; INVECTOR(data_obj, data, ndata); // Check that the input array is large enough if (ndata < self->params.npoints) { PyErr_SetString(CinvertorError, "Cinvertor.get_x: input array too short for data."); return NULL; } for(i=0; iparams.npoints; i++){ data[i] = self->params.x[i]; } return Py_BuildValue("i", self->params.npoints); } /** * Function to set the y data * Takes an array of doubles as input * Returns the number of entries found */ static PyObject * set_y(Cinvertor *self, PyObject *args) { PyObject *data_obj; Py_ssize_t ndata; double *data; if (!PyArg_ParseTuple(args, "O", &data_obj)) return NULL; OUTVECTOR(data_obj,data,ndata); self->params.y = data; self->params.ny = ndata; return Py_BuildValue("i", self->params.ny); } static PyObject * get_y(Cinvertor *self, PyObject *args) { PyObject *data_obj; Py_ssize_t ndata; double *data; int i; if (!PyArg_ParseTuple(args, "O", &data_obj)) return NULL; INVECTOR(data_obj, data, ndata); // Check that the input array is large enough if (ndata < self->params.ny) { PyErr_SetString(CinvertorError, "Cinvertor.get_y: input array too short for data."); return NULL; } for(i=0; iparams.ny; i++){ data[i] = self->params.y[i]; } return Py_BuildValue("i", self->params.npoints); } /** * Function to set the x data * Takes an array of doubles as input * Returns the number of entries found */ static PyObject * set_err(Cinvertor *self, PyObject *args) { PyObject *data_obj; Py_ssize_t ndata; double *data; if (!PyArg_ParseTuple(args, "O", &data_obj)) return NULL; OUTVECTOR(data_obj,data,ndata); self->params.err = data; self->params.nerr = ndata; return Py_BuildValue("i", self->params.nerr); } static PyObject * get_err(Cinvertor *self, PyObject *args) { PyObject *data_obj; Py_ssize_t ndata; double *data; int i; if (!PyArg_ParseTuple(args, "O", &data_obj)) return NULL; INVECTOR(data_obj, data, ndata); // Check that the input array is large enough if (ndata < self->params.nerr) { PyErr_SetString(CinvertorError, "Cinvertor.get_err: input array too short for data."); return NULL; } for(i=0; iparams.nerr; i++){ data[i] = self->params.err[i]; } return Py_BuildValue("i", self->params.npoints); } /** * Check the validity of the stored data * Returns the number of points if it's all good, -1 otherwise */ static PyObject * is_valid(Cinvertor *self, PyObject *args) { if(self->params.npoints==self->params.ny && self->params.npoints==self->params.nerr) { return Py_BuildValue("i", self->params.npoints); } else { return Py_BuildValue("i", -1); } } /** * Sets the maximum distance */ static PyObject * set_dmax(Cinvertor *self, PyObject *args) { double d_max; if (!PyArg_ParseTuple(args, "d", &d_max)) return NULL; self->params.d_max = d_max; return Py_BuildValue("d", self->params.d_max); } /** * Gets the maximum distance */ static PyObject * get_dmax(Cinvertor *self, PyObject *args) { return Py_BuildValue("d", self->params.d_max); } static PyObject * set_alpha(Cinvertor *self, PyObject *args) { double alpha; if (!PyArg_ParseTuple(args, "d", &alpha)) return NULL; self->params.alpha = alpha; return Py_BuildValue("d", self->params.alpha); } /** * Gets the maximum distance */ static PyObject * get_alpha(Cinvertor *self, PyObject *args) { return Py_BuildValue("d", self->params.alpha); } /** * Gets the number of x points */ static PyObject * get_nx(Cinvertor *self, PyObject *args) { return Py_BuildValue("i", self->params.npoints); } /** * Gets the number of y points */ static PyObject * get_ny(Cinvertor *self, PyObject *args) { return Py_BuildValue("i", self->params.ny); } /** * Gets the number of error points */ static PyObject * get_nerr(Cinvertor *self, PyObject *args) { return Py_BuildValue("i", self->params.nerr); } /** * Function to call to evaluate the residuals * @param args: input parameters * @return: list of residuals */ static PyObject * residuals(Cinvertor *self, PyObject *args) { double *pars; PyObject* residuals; PyObject* temp; double *res; int i; double residual, diff; // Regularization factor double regterm = 0.0; double tmp = 0.0; PyObject *data_obj; Py_ssize_t npars; if (!PyArg_ParseTuple(args, "O", &data_obj)) return NULL; OUTVECTOR(data_obj,pars,npars); // PyList of residuals // Should create this list only once and refill it residuals = PyList_New(self->params.npoints); regterm = reg_term(pars, self->params.d_max, npars); for(i=0; iparams.npoints; i++) { diff = self->params.y[i] - iq(pars, self->params.d_max, npars, self->params.x[i]); residual = diff*diff / (self->params.err[i]*self->params.err[i]); tmp = residual; // regularization term residual += self->params.alpha * regterm; if (PyList_SetItem(residuals, i, Py_BuildValue("d",residual) ) < 0){ PyErr_SetString(CinvertorError, "Cinvertor.residuals: error setting residual."); return NULL; }; } return residuals; } /** * Function to call to evaluate the residuals * for P(r) minimization (for testing purposes) * @param args: input parameters * @return: list of residuals */ static PyObject * pr_residuals(Cinvertor *self, PyObject *args) { double *pars; PyObject* residuals; PyObject* temp; double *res; int i; double residual, diff; // Regularization factor double regterm = 0.0; double tmp = 0.0; PyObject *data_obj; Py_ssize_t npars; if (!PyArg_ParseTuple(args, "O", &data_obj)) return NULL; OUTVECTOR(data_obj,pars,npars); // Should create this list only once and refill it residuals = PyList_New(self->params.npoints); regterm = reg_term(pars, self->params.d_max, npars); for(i=0; iparams.npoints; i++) { diff = self->params.y[i] - pr(pars, self->params.d_max, npars, self->params.x[i]); residual = diff*diff / (self->params.err[i]*self->params.err[i]); tmp = residual; // regularization term residual += self->params.alpha * regterm; if (PyList_SetItem(residuals, i, Py_BuildValue("d",residual) ) < 0){ PyErr_SetString(CinvertorError, "Cinvertor.residuals: error setting residual."); return NULL; }; } return residuals; } /** * Function to call to evaluate the scattering intensity * @param args: c-parameters, and q * @return: I(q) */ static PyObject * get_iq(Cinvertor *self, PyObject *args) { double *pars; double q, iq_value; PyObject *data_obj; Py_ssize_t npars; if (!PyArg_ParseTuple(args, "Od", &data_obj, &q)) return NULL; OUTVECTOR(data_obj,pars,npars); iq_value = iq(pars, self->params.d_max, npars, q); return Py_BuildValue("f", iq_value); } /** * Function to call to evaluate P(r) * @param args: c-parameters and r * @return: P(r) */ static PyObject * get_pr(Cinvertor *self, PyObject *args) { double *pars; double r, pr_value; PyObject *data_obj; Py_ssize_t npars; if (!PyArg_ParseTuple(args, "Od", &data_obj, &r)) return NULL; OUTVECTOR(data_obj,pars,npars); pr_value = pr(pars, self->params.d_max, npars, r); return Py_BuildValue("f", pr_value); } /** * Function to call to evaluate P(r) with errors * @param args: c-parameters and r * @return: P(r) */ static PyObject * get_pr_err(Cinvertor *self, PyObject *args) { double *pars; double *pars_err; double pr_err_value; double r, pr_value; PyObject *data_obj; Py_ssize_t npars; PyObject *err_obj; Py_ssize_t npars2; if (!PyArg_ParseTuple(args, "OOd", &data_obj, &err_obj, &r)) return NULL; OUTVECTOR(data_obj,pars,npars); OUTVECTOR(err_obj,pars_err,npars2); pr_err(pars, pars_err, self->params.d_max, npars, r, &pr_value, &pr_err_value); return Py_BuildValue("ff", pr_value, pr_err_value); } static PyMethodDef Cinvertor_methods[] = { {"residuals", (PyCFunction)residuals, METH_VARARGS, "Get the list of residuals"}, {"pr_residuals", (PyCFunction)pr_residuals, METH_VARARGS, "Get the list of residuals"}, {"set_x", (PyCFunction)set_x, METH_VARARGS, ""}, {"get_x", (PyCFunction)get_x, METH_VARARGS, ""}, {"set_y", (PyCFunction)set_y, METH_VARARGS, ""}, {"get_y", (PyCFunction)get_y, METH_VARARGS, ""}, {"set_err", (PyCFunction)set_err, METH_VARARGS, ""}, {"get_err", (PyCFunction)get_err, METH_VARARGS, ""}, {"set_dmax", (PyCFunction)set_dmax, METH_VARARGS, ""}, {"get_dmax", (PyCFunction)get_dmax, METH_VARARGS, ""}, {"set_alpha", (PyCFunction)set_alpha, METH_VARARGS, ""}, {"get_alpha", (PyCFunction)get_alpha, METH_VARARGS, ""}, {"get_nx", (PyCFunction)get_nx, METH_VARARGS, ""}, {"get_ny", (PyCFunction)get_ny, METH_VARARGS, ""}, {"get_nerr", (PyCFunction)get_nerr, METH_VARARGS, ""}, {"iq", (PyCFunction)get_iq, METH_VARARGS, ""}, {"pr", (PyCFunction)get_pr, METH_VARARGS, ""}, {"get_pr_err", (PyCFunction)get_pr_err, METH_VARARGS, ""}, {"is_valid", (PyCFunction)is_valid, METH_VARARGS, ""}, {NULL} }; static PyTypeObject CinvertorType = { PyObject_HEAD_INIT(NULL) 0, /*ob_size*/ "Cinvertor", /*tp_name*/ sizeof(Cinvertor), /*tp_basicsize*/ 0, /*tp_itemsize*/ (destructor)Cinvertor_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash */ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/ "Cinvertor objects", /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ Cinvertor_methods, /* tp_methods */ Cinvertor_members, /* tp_members */ 0, /* tp_getset */ 0, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ (initproc)Cinvertor_init, /* tp_init */ 0, /* tp_alloc */ Cinvertor_new, /* tp_new */ }; static PyMethodDef module_methods[] = { {NULL} }; /** * Function used to add the model class to a module * @param module: module to add the class to */ void addCinvertor(PyObject *module) { PyObject *d; if (PyType_Ready(&CinvertorType) < 0) return; Py_INCREF(&CinvertorType); PyModule_AddObject(module, "Cinvertor", (PyObject *)&CinvertorType); d = PyModule_GetDict(module); CinvertorError = PyErr_NewException("Cinvertor.error", NULL, NULL); PyDict_SetItemString(d, "CinvertorError", CinvertorError); } #ifndef PyMODINIT_FUNC /* declarations for DLL import/export */ #define PyMODINIT_FUNC void #endif PyMODINIT_FUNC initpr_inversion(void) { PyObject* m; m = Py_InitModule3("pr_inversion", module_methods, "C extension module for inversion to P(r)."); addCinvertor(m); }