""" Unit tests for fitting module """ import unittest from sans.guitools.plottables import Theory1D from sans.guitools.plottables import Data1D from sans.fit.ScipyFitting import Parameter import math class testFitModule(unittest.TestCase): def test2models2dataonconstraint(self): """ test fitting for two set of data and one model""" from sans.fit.Loader import Load load= Load() #Load the first data load.set_filename("testdata1.txt") load.set_values() data1 = Data1D(x=[], y=[],dx=None, dy=None) load.load_data(data1) #Load the second data load.set_filename("testdata2.txt") load.set_values() data2 = Data1D(x=[], y=[],dx=None, dy=None) load.load_data(data2) #Load the third data load.set_filename("testdata_line.txt") load.set_values() data3 = Data1D(x=[], y=[],dx=None, dy=None) load.load_data(data3) #Importing the Fit module from sans.fit.Fitting import Fit fitter= Fit('park') # Receives the type of model for the fitting from sans.guitools.LineModel import LineModel model1 = LineModel() model2 = LineModel() #Do the fit model1.setParam( 'A', 2.5) model1.setParam( 'B', 4) fitter.set_model(model1,"M1",1, ['A','B']) fitter.set_data(data1,1) model1.setParam( 'A', 2) model1.setParam( 'B', 3) fitter.set_model(model2,"M2",2, ['A','B']) fitter.set_data(data2,2) chisqr1, out1, cov1,result= fitter.fit() self.assert_(math.fabs(out1[1]-2.5)/math.sqrt(cov1[1][1]) < 2) print math.fabs(out1[0]-4.0)/math.sqrt(cov1[0][0]) #self.assert_(math.fabs(out1[0]-4.0)/math.sqrt(cov1[0][0]) < 2) self.assert_(math.fabs(out1[3]-2.5)/math.sqrt(cov1[3][3]) < 2) self.assert_(math.fabs(out1[2]-4.0)/math.sqrt(cov1[2][2]) < 2) print chisqr1/len(data1.x) #self.assert_(chisqr1/len(data1.x) < 2) print chisqr1/len(data2.x) #self.assert_(chisqr2/len(data2.x) < 2) fitter.set_data(data3,1) chisqr2, out2, cov2, result= fitter.fit(None,None) self.assert_(math.fabs(out2[1]-2.5)/math.sqrt(cov2[1][1]) < 2) print math.fabs(out2[0]-4.0)/math.sqrt(cov2[0][0]) #self.assert_(math.fabs(out1[0]-4.0)/math.sqrt(cov1[0][0]) < 2) self.assert_(math.fabs(out2[3]-2.5)/math.sqrt(cov2[3][3]) < 2) self.assert_(math.fabs(out2[2]-4.0)/math.sqrt(cov2[2][2]) < 2) print chisqr2/len(data1.x) #self.assert_(chisqr1/len(data1.x) < 2) print chisqr2/len(data2.x) #self.assert_(chisqr2/len(data2.x) < 2) fitter.remove_Fit_Problem(2) chisqr3, out3, cov3= fitter.fit() #print "park",chisqr3, out3, cov3 self.assert_(math.fabs(out1[1]-2.5)/math.sqrt(cov1[1][1]) < 2) print math.fabs(out1[0]-4.0) #self.assert_(math.fabs(out1[0]-4.0)/math.sqrt(cov1[0][0]) < 2) print chisqr1/len(data1.x) #self.assert_(chisqr1/len(data1.x) < 2) #self.assert_(chisqr1/len(data2.x) < 2) #failing at 7 place self.assertAlmostEquals(out3[1],out1[1]) self.assertAlmostEquals(out3[0],out1[0]) self.assertAlmostEquals(cov3[1][1],cov1[1][1]) self.assertAlmostEquals(cov3[0][0],cov1[0][0]) self.assertAlmostEquals(out2[1],out1[1]) self.assertAlmostEquals(out2[0],out1[0]) self.assertAlmostEquals(cov2[1][1],cov1[1][1]) self.assertAlmostEquals(cov2[0][0],cov1[0][0]) self.assertAlmostEquals(out2[1],out3[1]) self.assertAlmostEquals(out2[0],out3[0]) self.assertAlmostEquals(cov2[1][1],cov3[1][1]) self.assertAlmostEquals(cov2[0][0],cov3[0][0]) print chisqr1,chisqr2,chisqr3 #self.assertAlmostEquals(chisqr1,chisqr2) self.assert_(chisqr1)