source: sasview/park_integration/test/testpark.py @ 573eb2d6

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 573eb2d6 was 792db7d5, checked in by Gervaise Alina <gervyh@…>, 16 years ago

more tests added …most of them are failing because of uncertainty , scipy result and park resuls also little bit different

  • Property mode set to 100644
File size: 4.1 KB
RevLine 
[9e85792]1"""
2    Unit tests for fitting module
3"""
4import unittest
5from sans.guitools.plottables import Theory1D
6from sans.guitools.plottables import Data1D
7from sans.fit.ScipyFitting import Parameter
8import math
9class testFitModule(unittest.TestCase):
10   
11    def test2models2dataonconstraint(self):
12        """ test fitting for two set of data  and one model"""
13        from sans.fit.Loader import Load
14        load= Load()
[792db7d5]15        #Load the first data
[9e85792]16        load.set_filename("testdata1.txt")
17        load.set_values()
18        data1 = Data1D(x=[], y=[],dx=None, dy=None)
19        load.load_data(data1)
20       
[792db7d5]21        #Load the second data
[9e85792]22        load.set_filename("testdata2.txt")
23        load.set_values()
24        data2 = Data1D(x=[], y=[],dx=None, dy=None)
25        load.load_data(data2)
26       
[792db7d5]27        #Load the third data
28        load.set_filename("testdata_line.txt")
29        load.set_values()
30        data3 = Data1D(x=[], y=[],dx=None, dy=None)
31        load.load_data(data3)
32       
[9e85792]33        #Importing the Fit module
34        from sans.fit.Fitting import Fit
35        fitter= Fit()
36        # Receives the type of model for the fitting
37        from sans.guitools.LineModel import LineModel
38        model1  = LineModel()
39        model2  = LineModel()
40        #set engine for scipy
41        fitter.fit_engine('park')
42        engine = fitter.returnEngine()
43        #Do the fit
44        engine.set_param( model1,"M1", {'A':2.5,'B':4})
45        engine.set_model(model1,1)
46        engine.set_data(data1,1)
47       
[792db7d5]48        engine.set_param( model2,"M2", {'A':2,'B':4})
[9e85792]49        engine.set_model(model2,2)
50        engine.set_data(data2,2)
[792db7d5]51       
52        chisqr1, out1, cov1= engine.fit({'A':2,'B':1},None,None)
53       
54        self.assert_(math.fabs(out1[1]-2.5)/math.sqrt(cov1[1][1]) < 2)
55        print math.fabs(out1[0]-4.0)/math.sqrt(cov1[0][0])
56        #self.assert_(math.fabs(out1[0]-4.0)/math.sqrt(cov1[0][0]) < 2)
57        self.assert_(math.fabs(out1[3]-2.5)/math.sqrt(cov1[3][3]) < 2)
58        self.assert_(math.fabs(out1[2]-4.0)/math.sqrt(cov1[2][2]) < 2)
59        print chisqr1/len(data1.x)
60        #self.assert_(chisqr1/len(data1.x) < 2)
61        print chisqr1/len(data2.x)
62        #self.assert_(chisqr2/len(data2.x) < 2)
63       
64       
65        engine.set_data(data3,1)
66        chisqr2, out2, cov2= engine.fit({'A':2,'B':1},None,None)
67        self.assert_(math.fabs(out2[1]-2.5)/math.sqrt(cov2[1][1]) < 2)
68        print math.fabs(out2[0]-4.0)/math.sqrt(cov2[0][0])
69        #self.assert_(math.fabs(out1[0]-4.0)/math.sqrt(cov1[0][0]) < 2)
70        self.assert_(math.fabs(out2[3]-2.5)/math.sqrt(cov2[3][3]) < 2)
71        self.assert_(math.fabs(out2[2]-4.0)/math.sqrt(cov2[2][2]) < 2)
72        print chisqr2/len(data1.x)
73        #self.assert_(chisqr1/len(data1.x) < 2)
74        print chisqr2/len(data2.x)
75        #self.assert_(chisqr2/len(data2.x) < 2)
76       
77       
78       
79        engine.remove_Fit_Problem(2)
80        chisqr3, out3, cov3= engine.fit({'A':2,'B':1},None,None)
81        #print "park",chisqr3, out3, cov3
82        self.assert_(math.fabs(out1[1]-2.5)/math.sqrt(cov1[1][1]) < 2)
83        print math.fabs(out1[0]-4.0)
84        #self.assert_(math.fabs(out1[0]-4.0)/math.sqrt(cov1[0][0]) < 2)
85        print chisqr1/len(data1.x)
86        #self.assert_(chisqr1/len(data1.x) < 2)
87        #self.assert_(chisqr1/len(data2.x) < 2)
88        #failing at 7 place
89        self.assertAlmostEquals(out3[1],out1[1])
90        self.assertAlmostEquals(out3[0],out1[0])
91        self.assertAlmostEquals(cov3[1][1],cov1[1][1])
92        self.assertAlmostEquals(cov3[0][0],cov1[0][0])
93       
94        self.assertAlmostEquals(out2[1],out1[1])
95        self.assertAlmostEquals(out2[0],out1[0])
96        self.assertAlmostEquals(cov2[1][1],cov1[1][1])
97        self.assertAlmostEquals(cov2[0][0],cov1[0][0])
98       
99        self.assertAlmostEquals(out2[1],out3[1])
100        self.assertAlmostEquals(out2[0],out3[0])
101        self.assertAlmostEquals(cov2[1][1],cov3[1][1])
102        self.assertAlmostEquals(cov2[0][0],cov3[0][0])
103        print chisqr1,chisqr2,chisqr3
104        #self.assertAlmostEquals(chisqr1,chisqr2)
Note: See TracBrowser for help on using the repository browser.