""" @organization: ParkFitting module contains SansParameter,Model,Data FitArrange, ParkFit,Parameter classes.All listed classes work together to perform a simple fit with park optimizer. """ import time import numpy import park from park import fit,fitresult from park import assembly from park.fitmc import FitSimplex, FitMC from sans.guitools.plottables import Data1D from Loader import Load from AbstractFitEngine import FitEngine, Parameter, FitArrange class SansParameter(park.Parameter): """ SANS model parameters for use in the PARK fitting service. The parameter attribute value is redirected to the underlying parameter value in the SANS model. """ def __init__(self, name, model): self._model, self._name = model,name self.set(model.getParam(name)) def _getvalue(self): return self._model.getParam(self.name) def _setvalue(self,value): self._model.setParam(self.name, value) value = property(_getvalue,_setvalue) def _getrange(self): lo,hi = self._model.details[self.name][1:] if lo is None: lo = -numpy.inf if hi is None: hi = numpy.inf return lo,hi def _setrange(self,r): self._model.details[self.name][1:] = r range = property(_getrange,_setrange) class Model(object): """ PARK wrapper for SANS models. """ def __init__(self, sans_model): self.model = sans_model #print "ParkFitting:sans model",self.model sansp = sans_model.getParamList() #print "ParkFitting: sans model parameter list",sansp parkp = [SansParameter(p,sans_model) for p in sansp] #print "ParkFitting: park model parameter ",parkp self.parameterset = park.ParameterSet(sans_model.name,pars=parkp) def eval(self,x): #print "eval",self.parameterset[0].value,self.parameterset[1].value #print "model run ",self.model.run(x) return self.model.run(x) class Data(object): """ Wrapper class for SANS data """ def __init__(self,x=None,y=None,dy=None,dx=None,sans_data=None): if not sans_data==None: self.x= sans_data.x self.y= sans_data.y self.dx= sans_data.dx self.dy= sans_data.dy else: if x!=None and y!=None and dy!=None: self.x=x self.y=y self.dx=dx self.dy=dy else: raise ValueError,\ "Data is missing x, y or dy, impossible to compute residuals later on" self.qmin=None self.qmax=None def setFitRange(self,mini=None,maxi=None): """ to set the fit range""" self.qmin=mini self.qmax=maxi def residuals(self, fn): """ @param fn: function that return model value @return residuals """ x,y,dy = [numpy.asarray(v) for v in (self.x,self.y,self.dy)] if self.qmin==None and self.qmax==None: self.fx = fn(x) return (y - fn(x))/dy else: self.fx = fn(x[idx]) idx = x>=self.qmin & x <= self.qmax return (y[idx] - fn(x[idx]))/dy[idx] def residuals_deriv(self, model, pars=[]): """ @return residuals derivatives . @note: in this case just return empty array """ return [] class ParkFit(FitEngine): """ ParkFit performs the Fit.This class can be used as follow: #Do the fit Park create an engine: engine = ParkFit() Use data must be of type plottable Use a sans model Add data with a dictionnary of FitArrangeList where Uid is a key and data is saved in FitArrange object. engine.set_data(data,Uid) Set model parameter "M1"= model.name add {model.parameter.name:value}. @note: Set_param() if used must always preceded set_model() for the fit to be performed. engine.set_param( model,"M1", {'A':2,'B':4}) Add model with a dictionnary of FitArrangeList{} where Uid is a key and model is save in FitArrange object. engine.set_model(model,Uid) engine.fit return chisqr,[model.parameter 1,2,..],[[err1....][..err2...]] chisqr1, out1, cov1=engine.fit({model.parameter.name:value},qmin,qmax) @note: {model.parameter.name:value} is ignored in fit function since the user should make sure to call set_param himself. """ def __init__(self,data=[]): """ Creates a dictionary (self.fitArrangeList={})of FitArrange elements with Uid as keys """ self.fitArrangeList={} def createProblem(self): """ Extract sansmodel and sansdata from self.FitArrangelist ={Uid:FitArrange} Create parkmodel and park data ,form a list couple of parkmodel and parkdata create an assembly self.problem= park.Assembly([(parkmodel,parkdata)]) """ print "ParkFitting: In createproblem" mylist=[] listmodel=[] i=0 for k,value in self.fitArrangeList.iteritems(): sansmodel=value.get_model() #wrap sans model parkmodel = Model(sansmodel) #print "ParkFitting: createproblem: just create a model",parkmodel.parameterset for p in parkmodel.parameterset: #self.param_list.append(p._getname()) #if p.isfixed(): #print 'parameters',p.name #print "self.paramList",self.paramList if p.isfixed() and p._getname()in self.paramList: p.set([-numpy.inf,numpy.inf]) i+=1 Ldata=value.get_data() x,y,dy=self._concatenateData(Ldata) #wrap sansdata parkdata=Data(x,y,dy,None) couple=(parkmodel,parkdata) #print "Parkfitting: fitness",couple mylist.append(couple) #print "mylist",mylist self.problem = park.Assembly(mylist) def fit(self, qmin=None, qmax=None): """ Performs fit with park.fit module.It can perform fit with one model and a set of data, more than two fit of one model and sets of data or fit with more than two model associated with their set of data and constraints @param pars: Dictionary of parameter names for the model and their values. @param qmin: The minimum value of data's range to be fit @param qmax: The maximum value of data's range to be fit @note:all parameter are ignored most of the time.Are just there to keep ScipyFit and ParkFit interface the same. @return result.fitness: Value of the goodness of fit metric @return result.pvec: list of parameter with the best value found during fitting @return result.cov: Covariance matrix """ #from numpy.linalg.linalg.LinAlgError import LinAlgError #print "Parkfitting: fit method probably breaking just right before \ #call fit" self.createProblem() pars=self.problem.fit_parameters() self.problem.eval() #print "M0.B",self.problem[1].parameterset['B'].value,self.problem[0].parameterset['B'].value localfit = FitSimplex() localfit.ftol = 1e-8 fitter = FitMC(localfit=localfit) try: result = fit.fit(self.problem, fitter=fitter, handler= fitresult.ConsoleUpdate(improvement_delta=0.1)) #for p in result.parameters: # print "fit in park fitting", p.name, p.value,p.stderr return result.fitness,result.pvec,result.cov,result except : raise return