import logging, sys import copy from copy import deepcopy import park,numpy,math, copy from DataLoader.data_info import Data1D from DataLoader.data_info import Data2D class SansParameter(park.Parameter): """ SANS model parameters for use in the PARK fitting service. The parameter attribute value is redirected to the underlying parameter value in the SANS model. """ def __init__(self, name, model): """ @param name: the name of the model parameter @param model: the sans model to wrap as a park model """ self._model, self._name = model,name #set the value for the parameter of the given name self.set(model.getParam(name)) def _getvalue(self): """ override the _getvalue of park parameter @return value the parameter associates with self.name """ return self._model.getParam(self.name) def _setvalue(self,value): """ override the _setvalue pf park parameter @param value: the value to set on a given parameter """ self._model.setParam(self.name, value) value = property(_getvalue,_setvalue) def _getrange(self): """ Override _getrange of park parameter return the range of parameter """ #if not self.name in self._model.getDispParamList(): lo,hi = self._model.details[self.name][1:3] if lo is None: lo = -numpy.inf if hi is None: hi = numpy.inf #else: #lo,hi = self._model.details[self.name][1:] #if lo is None: lo = -numpy.inf #if hi is None: hi = numpy.inf if lo >= hi: raise ValueError,"wrong fit range for parameters" return lo,hi def _setrange(self,r): """ override _setrange of park parameter @param r: the value of the range to set """ self._model.details[self.name][1:3] = r range = property(_getrange,_setrange) class Model(park.Model): """ PARK wrapper for SANS models. """ def __init__(self, sans_model, **kw): """ @param sans_model: the sans model to wrap using park interface """ park.Model.__init__(self, **kw) self.model = sans_model self.name = sans_model.name #list of parameters names self.sansp = sans_model.getParamList() #list of park parameter self.parkp = [SansParameter(p,sans_model) for p in self.sansp] #list of parameterset self.parameterset = park.ParameterSet(sans_model.name,pars=self.parkp) self.pars=[] def clone(self): model = self.model.clone() model.name = self.model.name return Model(model) def getParams(self,fitparams): """ return a list of value of paramter to fit @param fitparams: list of paramaters name to fit """ list=[] self.pars=[] self.pars=fitparams for item in fitparams: for element in self.parkp: if element.name ==str(item): list.append(element.value) return list def setParams(self,paramlist, params): """ Set value for parameters to fit @param params: list of value for parameters to fit """ try: for i in range(len(self.parkp)): for j in range(len(paramlist)): if self.parkp[i].name==paramlist[j]: self.parkp[i].value = params[j] self.model.setParam(self.parkp[i].name,params[j]) except: raise def eval(self,x): """ override eval method of park model. @param x: the x value used to compute a function """ try: return self.model.evalDistribution(x) except: raise class FitData1D(Data1D): """ Wrapper class for SANS data FitData1D inherits from DataLoader.data_info.Data1D. Implements a way to get residuals from data. """ def __init__(self,x, y,dx= None, dy=None, smearer=None): Data1D.__init__(self, x=numpy.array(x), y=numpy.array(y), dx=dx, dy=dy) """ @param smearer: is an object of class QSmearer or SlitSmearer that will smear the theory data (slit smearing or resolution smearing) when set. The proper way to set the smearing object would be to do the following: from DataLoader.qsmearing import smear_selection smearer = smear_selection(some_data) fitdata1d = FitData1D( x= [1,3,..,], y= [3,4,..,8], dx=None, dy=[1,2...], smearer= smearer) Note that some_data _HAS_ to be of class DataLoader.data_info.Data1D Setting it back to None will turn smearing off. """ self.smearer = smearer if dy ==None or dy==[]: self.dy= numpy.zeros(len(self.y)) else: self.dy= numpy.asarray(dy) # For fitting purposes, replace zero errors by 1 #TODO: check validity for the rare case where only # a few points have zero errors self.dy[self.dy==0]=1 ## Min Q-value #Skip the Q=0 point, especially when y(q=0)=None at x[0]. if min (self.x) ==0.0 and self.x[0]==0 and not numpy.isfinite(self.y[0]): self.qmin = min(self.x[self.x!=0]) else: self.qmin= min (self.x) ## Max Q-value self.qmax = max (self.x) # Range used for input to smearing self._qmin_unsmeared = self.qmin self._qmax_unsmeared = self.qmax # Identify the bin range for the unsmeared and smeared spaces self.idx = (self.x>=self.qmin) & (self.x <= self.qmax) self.idx_unsmeared = (self.x>=self._qmin_unsmeared) & (self.x <= self._qmax_unsmeared) def setFitRange(self,qmin=None,qmax=None): """ to set the fit range""" # Skip Q=0 point, (especially for y(q=0)=None at x[0]). #ToDo: Fix this. if qmin==0.0 and not numpy.isfinite(self.y[qmin]): self.qmin = min(self.x[self.x!=0]) elif qmin!=None: self.qmin = qmin if qmax !=None: self.qmax = qmax # Determine the range needed in unsmeared-Q to cover # the smeared Q range self._qmin_unsmeared = self.qmin self._qmax_unsmeared = self.qmax self._first_unsmeared_bin = 0 self._last_unsmeared_bin = len(self.x)-1 if self.smearer!=None: self._first_unsmeared_bin, self._last_unsmeared_bin = self.smearer.get_bin_range(self.qmin, self.qmax) self._qmin_unsmeared = self.x[self._first_unsmeared_bin] self._qmax_unsmeared = self.x[self._last_unsmeared_bin] # Identify the bin range for the unsmeared and smeared spaces self.idx = (self.x>=self.qmin) & (self.x <= self.qmax) self.idx_unsmeared = (self.x>=self._qmin_unsmeared) & (self.x <= self._qmax_unsmeared) def getFitRange(self): """ @return the range of data.x to fit """ return self.qmin, self.qmax def residuals(self, fn): """ Compute residuals. If self.smearer has been set, use if to smear the data before computing chi squared. @param fn: function that return model value @return residuals """ # Compute theory data f(x) fx= numpy.zeros(len(self.x)) fx[self.idx_unsmeared] = fn(self.x[self.idx_unsmeared]) ## Smear theory data if self.smearer is not None: fx = self.smearer(fx, self._first_unsmeared_bin, self._last_unsmeared_bin) ## Sanity check if numpy.size(self.dy)!= numpy.size(fx): raise RuntimeError, "FitData1D: invalid error array %d <> %d" % (numpy.shape(self.dy), numpy.size(fx)) return (self.y[self.idx]-fx[self.idx])/self.dy[self.idx] def residuals_deriv(self, model, pars=[]): """ @return residuals derivatives . @note: in this case just return empty array """ return [] class FitData2D(Data2D): """ Wrapper class for SANS data """ def __init__(self,sans_data2d ,data=None, err_data=None): Data2D.__init__(self, data= data, err_data= err_data) """ Data can be initital with a data (sans plottable) or with vectors. """ self.x_bins_array = [] self.y_bins_array = [] self.res_err_image=[] self.index_model=[] self.qmin= None self.qmax= None self.set_data(sans_data2d ) def set_data(self, sans_data2d, qmin=None, qmax=None ): """ Determine the correct x_bin and y_bin to fit """ self.x_bins_array= numpy.reshape(sans_data2d.x_bins, [1,len(sans_data2d.x_bins)]) self.y_bins_array = numpy.reshape(sans_data2d.y_bins, [len(sans_data2d.y_bins),1]) x_max = max(sans_data2d.xmin, sans_data2d.xmax) y_max = max(sans_data2d.ymin, sans_data2d.ymax) ## fitting range if qmin == None: self.qmin = 1e-16 if qmax == None: self.qmax = math.sqrt(x_max*x_max +y_max*y_max) ## new error image for fitting purpose if self.err_data== None or self.err_data ==[]: self.res_err_data= numpy.zeros(len(self.y_bins),len(self.x_bins)) else: self.res_err_data = copy.deepcopy(self.err_data) self.res_err_data[self.res_err_data==0]=1 self.radius= numpy.sqrt(self.x_bins_array**2 + self.y_bins_array**2) self.index_model = (self.qmin <= self.radius)&(self.radius<= self.qmax) def setFitRange(self,qmin=None,qmax=None): """ to set the fit range""" if qmin==0.0: self.qmin = 1e-16 elif qmin!=None: self.qmin = qmin if qmax!=None: self.qmax= qmax self.radius= numpy.sqrt(self.x_bins_array**2 + self.y_bins_array**2) self.index_model = (self.qmin <= self.radius)&(self.radius<= self.qmax) def getFitRange(self): """ @return the range of data.x to fit """ return self.qmin, self.qmax def residuals(self, fn): res=self.index_model*(self.data - fn([self.x_bins_array, self.y_bins_array]))/self.res_err_data return res.ravel() def residuals_deriv(self, model, pars=[]): """ @return residuals derivatives . @note: in this case just return empty array """ return [] class FitAbort(Exception): """ Exception raise to stop the fit """ print"Creating fit abort Exception" class SansAssembly: """ Sans Assembly class a class wrapper to be call in optimizer.leastsq method """ def __init__(self,paramlist,model=None , data=None, curr_thread= None): """ @param model: the model wrapper for sans -model @param data: the data wrapper for sans data """ self.model = model.clone() self.data = deepcopy(data) self.paramlist = deepcopy(paramlist) self.curr_thread= curr_thread self.res=[] self.func_name="Functor" def chisq(self, params): """ Calculates chi^2 @param params: list of parameter values @return: chi^2 """ sum = 0 for item in self.res: sum += item*item if len(self.res)==0: return None return sum/ len(self.res) def __call__(self,params): """ Compute residuals @param params: value of parameters to fit """ #import thread self.model.setParams(self.paramlist,params) self.res= self.data.residuals(self.model.eval) #if self.curr_thread != None : # try: # self.curr_thread.isquit() # except: # raise FitAbort,"stop leastsqr optimizer" return self.res class FitEngine: def __init__(self): """ Base class for scipy and park fit engine """ #List of parameter names to fit self.paramList=[] #Dictionnary of fitArrange element (fit problems) self.fitArrangeDict={} def _concatenateData(self, listdata=[]): """ _concatenateData method concatenates each fields of all data contains ins listdata. @param listdata: list of data @return Data: Data is wrapper class for sans plottable. it is created with all parameters of data concatenanted @raise: if listdata is empty will return None @raise: if data in listdata don't contain dy field ,will create an error during fitting """ #TODO: we have to refactor the way we handle data. # We should move away from plottables and move towards the Data1D objects # defined in DataLoader. Data1D allows data manipulations, which should be # used to concatenate. # In the meantime we should switch off the concatenation. #if len(listdata)>1: # raise RuntimeError, "FitEngine._concatenateData: Multiple data files is not currently supported" #return listdata[0] if listdata==[]: raise ValueError, " data list missing" else: xtemp=[] ytemp=[] dytemp=[] self.mini=None self.maxi=None for item in listdata: data=item.data mini,maxi=data.getFitRange() if self.mini==None and self.maxi==None: self.mini=mini self.maxi=maxi else: if mini < self.mini: self.mini=mini if self.maxi < maxi: self.maxi=maxi for i in range(len(data.x)): xtemp.append(data.x[i]) ytemp.append(data.y[i]) if data.dy is not None and len(data.dy)==len(data.y): dytemp.append(data.dy[i]) else: raise RuntimeError, "Fit._concatenateData: y-errors missing" data= Data(x=xtemp,y=ytemp,dy=dytemp) data.setFitRange(self.mini, self.maxi) return data def set_model(self,model,Uid,pars=[], constraints=[]): """ set a model on a given uid in the fit engine. @param model: sans.models type @param Uid :is the key of the fitArrange dictionnary where model is saved as a value @param pars: the list of parameters to fit @param constraints: list of tuple (name of parameter, value of parameters) the value of parameter must be a string to constraint 2 different parameters. Example: we want to fit 2 model M1 and M2 both have parameters A and B. constraints can be: constraints = [(M1.A, M2.B+2), (M1.B= M2.A *5),...,] @note : pars must contains only name of existing model's paramaters """ if model == None: raise ValueError, "AbstractFitEngine: Need to set model to fit" #print "set_model",model.name #new_model= deepcopy(model) new_model = model.clone() new_model.name = model.name if not issubclass(new_model.__class__, Model): new_model= Model(new_model) if len(constraints)>0: for constraint in constraints: name, value = constraint try: new_model.parameterset[ str(name)].set( str(value) ) except: msg= "Fit Engine: Error occurs when setting the constraint" msg += " %s for parameter %s "%(value, name) raise ValueError, msg if len(pars) >0: temp=[] for item in pars: if item in new_model.model.getParamList(): temp.append(item) self.paramList.append(item) else: msg = "wrong parameter %s used"%str(item) msg += "to set model %s. Choose"%str(new_model.model.name) msg += "parameter name within %s"%str(new_model.model.getParamList()) raise ValueError,msg #A fitArrange is already created but contains dList only at Uid if self.fitArrangeDict.has_key(Uid): self.fitArrangeDict[Uid].set_model(new_model) self.fitArrangeDict[Uid].pars= pars else: #no fitArrange object has been create with this Uid fitproblem = FitArrange() fitproblem.set_model(new_model) fitproblem.pars= pars self.fitArrangeDict[Uid] = fitproblem else: raise ValueError, "park_integration:missing parameters" def set_data(self,data,Uid,smearer=None,qmin=None,qmax=None): """ Receives plottable, creates a list of data to fit,set data in a FitArrange object and adds that object in a dictionary with key Uid. @param data: data added @param Uid: unique key corresponding to a fitArrange object with data """ #print "set_data",data.__class__.__name__ if data.__class__.__name__=='Data2D': fitdata=FitData2D(sans_data2d=data, data=data.data, err_data= data.err_data) else: fitdata=FitData1D(x=data.x, y=data.y , dx= data.dx,dy=data.dy,smearer=smearer) fitdata.setFitRange(qmin=qmin,qmax=qmax) #A fitArrange is already created but contains model only at Uid if self.fitArrangeDict.has_key(Uid): self.fitArrangeDict[Uid].add_data(fitdata) else: #no fitArrange object has been create with this Uid fitproblem= FitArrange() fitproblem.add_data(fitdata) self.fitArrangeDict[Uid]=fitproblem def get_model(self,Uid): """ @param Uid: Uid is key in the dictionary containing the model to return @return a model at this uid or None if no FitArrange element was created with this Uid """ if self.fitArrangeDict.has_key(Uid): return self.fitArrangeDict[Uid].get_model() else: return None def remove_Fit_Problem(self,Uid): """remove fitarrange in Uid""" if self.fitArrangeDict.has_key(Uid): del self.fitArrangeDict[Uid] def select_problem_for_fit(self,Uid,value): """ select a couple of model and data at the Uid position in dictionary and set in self.selected value to value @param value: the value to allow fitting. can only have the value one or zero """ if self.fitArrangeDict.has_key(Uid): self.fitArrangeDict[Uid].set_to_fit( value) def get_problem_to_fit(self,Uid): """ return the self.selected value of the fit problem of Uid @param Uid: the Uid of the problem """ if self.fitArrangeDict.has_key(Uid): self.fitArrangeDict[Uid].get_to_fit() class FitArrange: def __init__(self): """ Class FitArrange contains a set of data for a given model to perform the Fit.FitArrange must contain exactly one model and at least one data for the fit to be performed. model: the model selected by the user Ldata: a list of data what the user wants to fit """ self.model = None self.dList =[] self.pars=[] #self.selected is zero when this fit problem is not schedule to fit #self.selected is 1 when schedule to fit self.selected = 0 def set_model(self,model): """ set_model save a copy of the model @param model: the model being set """ self.model = model self.model.name = model.name def add_data(self,data): """ add_data fill a self.dList with data to fit @param data: Data to add in the list """ if not data in self.dList: self.dList.append(data) def get_model(self): """ @return: saved model """ return self.model def get_data(self): """ @return: list of data dList""" #return self.dList return self.dList[0] def remove_data(self,data): """ Remove one element from the list @param data: Data to remove from dList """ if data in self.dList: self.dList.remove(data) def set_to_fit (self, value=0): """ set self.selected to 0 or 1 for other values raise an exception @param value: integer between 0 or 1 """ self.selected= value def get_to_fit(self): """ @return self.selected value """ return self.selected