[4c718654] | 1 | |
---|
[48882d1] | 2 | import park,numpy |
---|
| 3 | |
---|
| 4 | class SansParameter(park.Parameter): |
---|
| 5 | """ |
---|
| 6 | SANS model parameters for use in the PARK fitting service. |
---|
| 7 | The parameter attribute value is redirected to the underlying |
---|
| 8 | parameter value in the SANS model. |
---|
| 9 | """ |
---|
| 10 | def __init__(self, name, model): |
---|
| 11 | self._model, self._name = model,name |
---|
| 12 | self.set(model.getParam(name)) |
---|
| 13 | |
---|
| 14 | def _getvalue(self): return self._model.getParam(self.name) |
---|
| 15 | |
---|
| 16 | def _setvalue(self,value): |
---|
| 17 | self._model.setParam(self.name, value) |
---|
| 18 | |
---|
| 19 | value = property(_getvalue,_setvalue) |
---|
| 20 | |
---|
| 21 | def _getrange(self): |
---|
| 22 | lo,hi = self._model.details[self.name][1:] |
---|
| 23 | if lo is None: lo = -numpy.inf |
---|
| 24 | if hi is None: hi = numpy.inf |
---|
| 25 | return lo,hi |
---|
| 26 | |
---|
| 27 | def _setrange(self,r): |
---|
| 28 | self._model.details[self.name][1:] = r |
---|
| 29 | range = property(_getrange,_setrange) |
---|
| 30 | |
---|
| 31 | |
---|
| 32 | class Model(object): |
---|
| 33 | """ |
---|
| 34 | PARK wrapper for SANS models. |
---|
| 35 | """ |
---|
[388309d] | 36 | def __init__(self, sans_model, **kw): |
---|
[48882d1] | 37 | self.model = sans_model |
---|
[d831626] | 38 | self.name=sans_model.name |
---|
[48882d1] | 39 | #print "ParkFitting:sans model",self.model |
---|
| 40 | self.sansp = sans_model.getParamList() |
---|
| 41 | #print "ParkFitting: sans model parameter list",sansp |
---|
| 42 | self.parkp = [SansParameter(p,sans_model) for p in self.sansp] |
---|
| 43 | #print "ParkFitting: park model parameter ",self.parkp |
---|
| 44 | self.parameterset = park.ParameterSet(sans_model.name,pars=self.parkp) |
---|
| 45 | self.pars=[] |
---|
[388309d] | 46 | |
---|
| 47 | #def __call__(self, x, pars=[]): |
---|
| 48 | # return self.eval(x) |
---|
[48882d1] | 49 | def getParams(self,fitparams): |
---|
| 50 | list=[] |
---|
| 51 | self.pars=[] |
---|
| 52 | self.pars=fitparams |
---|
| 53 | for item in fitparams: |
---|
| 54 | for element in self.parkp: |
---|
| 55 | if element.name ==str(item): |
---|
| 56 | list.append(element.value) |
---|
| 57 | #print "abstractfitengine: getparams",list |
---|
| 58 | return list |
---|
| 59 | |
---|
| 60 | def setParams(self, params): |
---|
| 61 | list=[] |
---|
| 62 | for item in self.parkp: |
---|
| 63 | list.append(item.name) |
---|
| 64 | list.sort() |
---|
| 65 | for i in range(len(params)): |
---|
[388309d] | 66 | self.parkp[i].value = params[i] |
---|
| 67 | print "abstractfitengine: set-params",list[i],params[i] |
---|
[48882d1] | 68 | |
---|
| 69 | self.model.setParam(list[i],params[i]) |
---|
| 70 | |
---|
| 71 | def eval(self,x): |
---|
[d831626] | 72 | |
---|
[48882d1] | 73 | return self.model.runXY(x) |
---|
[388309d] | 74 | |
---|
| 75 | #def set(self, **kw): |
---|
| 76 | #""" |
---|
| 77 | #Set the initial value for a set of parameters. |
---|
| 78 | #E.g., model.set(width=3,center=5) |
---|
| 79 | #""" |
---|
| 80 | #print "Abstractfitting : set called" |
---|
| 81 | # This is a convenience funciton for the user. |
---|
| 82 | # |
---|
| 83 | #for k,v in kw.items(): |
---|
| 84 | # self.parameterset[k].set(v) |
---|
| 85 | |
---|
[48882d1] | 86 | class Data(object): |
---|
| 87 | """ Wrapper class for SANS data """ |
---|
| 88 | def __init__(self,x=None,y=None,dy=None,dx=None,sans_data=None): |
---|
| 89 | |
---|
| 90 | if sans_data !=None: |
---|
| 91 | self.x= sans_data.x |
---|
| 92 | self.y= sans_data.y |
---|
| 93 | self.dx= sans_data.dx |
---|
| 94 | self.dy= sans_data.dy |
---|
| 95 | |
---|
| 96 | elif (x!=None and y!=None and dy!=None): |
---|
| 97 | self.x=x |
---|
| 98 | self.y=y |
---|
| 99 | self.dx=dx |
---|
| 100 | self.dy=dy |
---|
| 101 | else: |
---|
| 102 | raise ValueError,\ |
---|
| 103 | "Data is missing x, y or dy, impossible to compute residuals later on" |
---|
| 104 | self.qmin=None |
---|
| 105 | self.qmax=None |
---|
| 106 | |
---|
| 107 | def setFitRange(self,mini=None,maxi=None): |
---|
| 108 | """ to set the fit range""" |
---|
| 109 | self.qmin=mini |
---|
| 110 | self.qmax=maxi |
---|
| 111 | def getFitRange(self): |
---|
| 112 | return self.qmin, self.qmax |
---|
| 113 | def residuals(self, fn): |
---|
| 114 | """ @param fn: function that return model value |
---|
| 115 | @return residuals |
---|
| 116 | """ |
---|
| 117 | x,y,dy = [numpy.asarray(v) for v in (self.x,self.y,self.dy)] |
---|
| 118 | if self.qmin==None and self.qmax==None: |
---|
| 119 | fx =[fn(v) for v in x] |
---|
| 120 | return (y - fx)/dy |
---|
| 121 | else: |
---|
| 122 | idx = (x>=self.qmin) & (x <= self.qmax) |
---|
| 123 | fx = [fn(item)for item in x[idx ]] |
---|
| 124 | return (y[idx] - fx)/dy[idx] |
---|
| 125 | |
---|
| 126 | |
---|
| 127 | |
---|
| 128 | def residuals_deriv(self, model, pars=[]): |
---|
| 129 | """ |
---|
| 130 | @return residuals derivatives . |
---|
| 131 | @note: in this case just return empty array |
---|
| 132 | """ |
---|
| 133 | return [] |
---|
| 134 | |
---|
| 135 | class sansAssembly: |
---|
| 136 | def __init__(self,Model=None , Data=None): |
---|
| 137 | self.model = Model |
---|
| 138 | self.data = Data |
---|
| 139 | self.res=[] |
---|
| 140 | def chisq(self, params): |
---|
| 141 | """ |
---|
| 142 | Calculates chi^2 |
---|
| 143 | @param params: list of parameter values |
---|
| 144 | @return: chi^2 |
---|
| 145 | """ |
---|
| 146 | sum = 0 |
---|
| 147 | for item in self.res: |
---|
| 148 | sum += item*item |
---|
| 149 | return sum |
---|
| 150 | def __call__(self,params): |
---|
| 151 | self.model.setParams(params) |
---|
| 152 | self.res= self.data.residuals(self.model.eval) |
---|
| 153 | return self.res |
---|
| 154 | |
---|
[4c718654] | 155 | class FitEngine: |
---|
[ee5b04c] | 156 | def __init__(self): |
---|
| 157 | self.paramList=[] |
---|
[4c718654] | 158 | def _concatenateData(self, listdata=[]): |
---|
| 159 | """ |
---|
| 160 | _concatenateData method concatenates each fields of all data contains ins listdata. |
---|
| 161 | @param listdata: list of data |
---|
| 162 | |
---|
[48882d1] | 163 | @return Data: |
---|
[4c718654] | 164 | |
---|
| 165 | @raise: if listdata is empty will return None |
---|
| 166 | @raise: if data in listdata don't contain dy field ,will create an error |
---|
| 167 | during fitting |
---|
| 168 | """ |
---|
| 169 | if listdata==[]: |
---|
| 170 | raise ValueError, " data list missing" |
---|
| 171 | else: |
---|
| 172 | xtemp=[] |
---|
| 173 | ytemp=[] |
---|
| 174 | dytemp=[] |
---|
[48882d1] | 175 | self.mini=None |
---|
| 176 | self.maxi=None |
---|
[4c718654] | 177 | |
---|
| 178 | for data in listdata: |
---|
[48882d1] | 179 | mini,maxi=data.getFitRange() |
---|
| 180 | if self.mini==None and self.maxi==None: |
---|
| 181 | self.mini=mini |
---|
| 182 | self.maxi=maxi |
---|
| 183 | else: |
---|
| 184 | if mini < self.mini: |
---|
| 185 | self.mini=mini |
---|
| 186 | if self.maxi < maxi: |
---|
| 187 | self.maxi=maxi |
---|
| 188 | |
---|
| 189 | |
---|
[4c718654] | 190 | for i in range(len(data.x)): |
---|
| 191 | xtemp.append(data.x[i]) |
---|
| 192 | ytemp.append(data.y[i]) |
---|
| 193 | if data.dy is not None and len(data.dy)==len(data.y): |
---|
| 194 | dytemp.append(data.dy[i]) |
---|
| 195 | else: |
---|
[ee5b04c] | 196 | raise RuntimeError, "Fit._concatenateData: y-errors missing" |
---|
[48882d1] | 197 | #return xtemp, ytemp,dytemp |
---|
| 198 | data= Data(x=xtemp,y=ytemp,dy=dytemp) |
---|
| 199 | data.setFitRange(self.mini, self.maxi) |
---|
| 200 | return data |
---|
[f44dbc7] | 201 | def set_model(self,model,name,Uid,pars=[]): |
---|
| 202 | if len(pars) >0: |
---|
[48882d1] | 203 | self.paramList = [] |
---|
[6831a99] | 204 | if model==None: |
---|
[f44dbc7] | 205 | raise ValueError, "AbstractFitEngine: Specify parameters to fit" |
---|
[6831a99] | 206 | else: |
---|
[3c404d3] | 207 | model.model.name = name |
---|
[d831626] | 208 | model.name = name |
---|
[48882d1] | 209 | self.paramList=pars |
---|
[6831a99] | 210 | #A fitArrange is already created but contains dList only at Uid |
---|
| 211 | if self.fitArrangeList.has_key(Uid): |
---|
| 212 | self.fitArrangeList[Uid].set_model(model) |
---|
| 213 | else: |
---|
| 214 | #no fitArrange object has been create with this Uid |
---|
[48882d1] | 215 | fitproblem = FitArrange() |
---|
[6831a99] | 216 | fitproblem.set_model(model) |
---|
[48882d1] | 217 | self.fitArrangeList[Uid] = fitproblem |
---|
[d4b0687] | 218 | else: |
---|
[6831a99] | 219 | raise ValueError, "park_integration:missing parameters" |
---|
[48882d1] | 220 | |
---|
| 221 | def set_data(self,data,Uid,qmin=None,qmax=None): |
---|
[d4b0687] | 222 | """ Receives plottable, creates a list of data to fit,set data |
---|
| 223 | in a FitArrange object and adds that object in a dictionary |
---|
| 224 | with key Uid. |
---|
| 225 | @param data: data added |
---|
| 226 | @param Uid: unique key corresponding to a fitArrange object with data |
---|
| 227 | """ |
---|
[48882d1] | 228 | if qmin !=None and qmax !=None: |
---|
| 229 | data.setFitRange(mini=qmin,maxi=qmax) |
---|
[d4b0687] | 230 | #A fitArrange is already created but contains model only at Uid |
---|
| 231 | if self.fitArrangeList.has_key(Uid): |
---|
| 232 | self.fitArrangeList[Uid].add_data(data) |
---|
| 233 | else: |
---|
| 234 | #no fitArrange object has been create with this Uid |
---|
| 235 | fitproblem= FitArrange() |
---|
| 236 | fitproblem.add_data(data) |
---|
[48882d1] | 237 | self.fitArrangeList[Uid]=fitproblem |
---|
| 238 | |
---|
[d4b0687] | 239 | def get_model(self,Uid): |
---|
| 240 | """ |
---|
| 241 | @param Uid: Uid is key in the dictionary containing the model to return |
---|
| 242 | @return a model at this uid or None if no FitArrange element was created |
---|
| 243 | with this Uid |
---|
| 244 | """ |
---|
| 245 | if self.fitArrangeList.has_key(Uid): |
---|
| 246 | return self.fitArrangeList[Uid].get_model() |
---|
| 247 | else: |
---|
| 248 | return None |
---|
| 249 | |
---|
| 250 | def remove_Fit_Problem(self,Uid): |
---|
| 251 | """remove fitarrange in Uid""" |
---|
| 252 | if self.fitArrangeList.has_key(Uid): |
---|
| 253 | del self.fitArrangeList[Uid] |
---|
[4c718654] | 254 | |
---|
| 255 | |
---|
[d4b0687] | 256 | class FitArrange: |
---|
| 257 | def __init__(self): |
---|
| 258 | """ |
---|
| 259 | Class FitArrange contains a set of data for a given model |
---|
| 260 | to perform the Fit.FitArrange must contain exactly one model |
---|
| 261 | and at least one data for the fit to be performed. |
---|
| 262 | model: the model selected by the user |
---|
| 263 | Ldata: a list of data what the user wants to fit |
---|
| 264 | |
---|
| 265 | """ |
---|
| 266 | self.model = None |
---|
| 267 | self.dList =[] |
---|
| 268 | |
---|
| 269 | def set_model(self,model): |
---|
| 270 | """ |
---|
| 271 | set_model save a copy of the model |
---|
| 272 | @param model: the model being set |
---|
| 273 | """ |
---|
| 274 | self.model = model |
---|
| 275 | |
---|
| 276 | def add_data(self,data): |
---|
| 277 | """ |
---|
| 278 | add_data fill a self.dList with data to fit |
---|
| 279 | @param data: Data to add in the list |
---|
| 280 | """ |
---|
| 281 | if not data in self.dList: |
---|
| 282 | self.dList.append(data) |
---|
| 283 | |
---|
| 284 | def get_model(self): |
---|
| 285 | """ @return: saved model """ |
---|
| 286 | return self.model |
---|
| 287 | |
---|
| 288 | def get_data(self): |
---|
| 289 | """ @return: list of data dList""" |
---|
| 290 | return self.dList |
---|
| 291 | |
---|
| 292 | def remove_data(self,data): |
---|
| 293 | """ |
---|
| 294 | Remove one element from the list |
---|
| 295 | @param data: Data to remove from dList |
---|
| 296 | """ |
---|
| 297 | if data in self.dList: |
---|
| 298 | self.dList.remove(data) |
---|
[94b44293] | 299 | |
---|
[4c718654] | 300 | |
---|
| 301 | |
---|
| 302 | |
---|