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1.    Introduction  
The present text documents the modules made available by the DANSE software for SANS.  

  

Readers are also referred to the SANS/DANSE wiki page: 

  

http://danse.us/trac/sans 

  

Users can report a bug at the following URL: 

  

http://danse.us/trac/sans/newticket 

  

 Note: Our model uses the form factor calculations implemented in a c-library provided by 

the NIST Center for Neutron Research and thus some content and figures in this document 

are originated from or shared with the NIST Igor analysis package by permission (S. Kline, 

NIST, 2006). 
  

2.    Shapes (Scattering Intensity Models) 

  

This software provides form factors for various particle shapes. After giving a mathematical 

definition of each model, we draw the list of parameters available to the user. Validation plots for 

each model are also presented. Instructions on how to use the software is available with the 

source code, available from SVN: 

  

svn co svn://danse.us/sans/releases/sansmodels-x.x 

  



To easily compare to the scattering intensity measured in experiments, we normalize the form 

factors by the volume of the particle: 

  

             

  

with 

         

  

where P0(q) is the un-normalized form factor, ρ(r) is the scattering length density at a given point 

in space and the integration is done over the volume V of the scatterer.  

  

For systems without inter-particle interference, the form factors we provide can be related to the 

scattering intensity by the particle volume fraction: . 

  

Our so-called 1D scattering intensity functions provide P(q) for the case where the scatterer is 

randomly oriented. In that case, the scattering intensity only depends on the length of q. The 

intensity measured on the plane of the SANS detector will have an azimuthal symmetry around 

q=0. 

  

Our so-called 2D scattering intensity functions provide P(q, φ) for an oriented system as a 

function of a q-vector in the plane of the detector. We define the angle φ as the angle between 

the q vector and the horizontal (x) axis of the plane of the detector. 

  

  

2.1.                     Sphere Model 
  

This model provides the form factor, P(q), for a monodisperse spherical particle with uniform 

scattering length density. The form factor is normalized by the particle volume as described 

below. 

  

1.1.     Definition 
  

The 1D scattering intensity is calculated in the following way (Guinier, 1955): 

  

             

  

  

where scale is a scale factor* volume fraction, V is the volume of the scatterer, r is the radius of 

the sphere, bkg is the background level and Δρ (contrast)  is the scattering length density (SLD) 

 difference between the scatterer and the solvent it is in. 

  



The 2D scattering intensity is the same as P(q) above, regardless of the orientation of the q 

vector. 

  

The returned value is scaled to units of [cm
-1

] and the parameters of the sphere model are the 

following: 

  

Parameter name Units Default value 

scale None 1 

radius Å 60 

sldSph Å
 -2

 2.0e-6 

sldSolv Å
 -2

 1.0e-6 

background cm
-1

 0 

  

  

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006). 

  

  

2.1.     Validation of the sphere model 
  

Validation of our code was done by comparing the output of the 1D model to the output of the 

software provided by the NIST (Kline, 2006). Figure 1 shows a comparison of the output of our 

model and the output of the NIST software. 

  



 

  

Figure 1: Comparison of the DANSE scattering intensity for a sphere with the output of the NIST SANS 

analysis software. The parameters were set to: Scale=1.0, Radius=60 Å, Contrast=1e-6 Å
 -2

, and 

Background=0.01 cm
 -1

. 

  

  

2.2.                     FuzzySphereModel 
  

 This model is to calculate the scattering from spherical particles with a "fuzzy" interface.  

  

1.1.     Definition 
  

The 1D scattering intensity is calculated in the following way (Guinier, 1955): 

The returned value is scaled to units of [cm-1 sr-1], absolute scale. 

  

The scattering intensity I(q) is calculated as: 

  

 
  

where the amplitude A(q) is given as the typical sphere scattering convoluted with a Gaussian to 

get a gradual drop-off in the scattering length density: 

  

  

 
  

  



Here A
2
(q) is the form factor, P(q). The „scale‟ is equivalent to the volume fraction of spheres, 

each of volume, V. Contrast (Δρ ) is the difference of scattering length densities of the sphere 

and the surrounding solvent. 

  

The poly-dispersion in radius and in fuzziness is provided. 

  

(direct from the reference) 

The "fuzziness" of the interface is defined by the parameter (sigma)fuzzy. The particle radius R 

represents the radius of the particle where the scattering length density profile decreased to 1/2 of 

the core density. The (sigma)fuzzy  is the width of the smeared particle surface: i.e., the standard 

deviation from the average height of the fuzzy interface. The inner regions [] that display a 

higher density are described by the radial box profile extending to a radius of approximately 

Rbox ~ R - 2(sigma). the profile approaches zero as Rsans ~ R + 2(sigma). 

For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the q vector 

is defined as . 
  

REFERENCE 

M. Stieger, J. S. Pedersen, P. Lindner, W. Richtering, Langmuir 20 (2004) 7283-7292. 

  

TEST DATASET 

This example dataset is produced by running the FuzzySphereModel, using 200 data points, 

qmin = 0.001 Å
-1

,  qmax = 0.7 A
-1

 and the default coef_fuzz values: 

  

Parameter name Units Default value 

scale None 1.0 

radius Å 60 

fuzziness Å 10 

sldSolv Å
 -2

 3e-6 

sldSph Å
 -2

 1e-6 

background cm
-1

 0.001 

  



 
Figure. 1D plot using the default values (w/200 data point). 

  

  

2.3.                     Core Shell (Sphere) Model 
  

This model provides the form factor, P(q), for a spherical particle with a core-shell structure. The 

form factor is normalized by the particle volume. 

  

1.1.     Definition 
  

The 1D scattering intensity is calculated in the following way (Guinier, 1955): 

  

  

  

where scale is a scale factor, Vs is the volume of the outer shell, Vc is the volume of the core, rs is 

the radius of the shell, rc is the radius of the core, ρc is the scattering length density of the core, ρs 

is the scattering length density of the shell, ρsolv is the scattering length density of the solvent, 

and bkg is the background level.  

  

The 2D scattering intensity is the same as P(q) above, regardless of the orientation of the q 

vector. 

  

For P*S: The outer most radius (= radius + thickness) is used as the effective radius toward S(Q) 

when P(Q)*S(Q) is applied.  

  

The returned value is scaled to units of [cm
-1

] and the parameters of the core-shell sphere model 

are the following: 

Here, radius = the radius of the core and thickness = the thickness of the shell. 

  



Parameter name Units Default value 

scale None 1.0 

(core) radius Å 60 

thickness Å 10 

core_sld Å
 -2

 1e-6 

shell_sld Å
 -2

 2e-6 

solvent_sld Å
 -2

 3e-6 

background cm
-1

 0.001 

  

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006). 

             

REFERENCE 

  

Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John Wiley and Sons, New 

York, (1955). 

  

2.1.     Validation of the core-shell sphere model 
  

Validation of our code was done by comparing the output of the 1D model to the output of the 

software provided by the NIST (Kline, 2006). Figure 1 shows a comparison of the output of our 

model and the output of the NIST software. 

  

 

Figure 7: Comparison of the DANSE scattering intensity for a core-shell sphere with the output of the NIST 

SANS analysis software. The parameters were set to: Scale=1.0, Radius=60 Å, Contrast=1e-6 Å
 -2

, and 

Background=0.001 cm
 -1

. 

  



  

2.4.                     CoreFourShell(Sphere)Model 
  

This model provides the scattering from monodisperse core 4 shell structures. It  has a core of a 

specified radius, with four shells. The SLDs of the core and each shell are individually specified.  

  

1.1.     Definition 
  

The returned value is scaled to units of [cm-1sr-1], absolute scale. 

  

This model is a trivial extension of the CoreShell function to a larger number of shells. See the 

CoreShell function for a diagram and documentation. 

  

Be careful that the SLDs and scale can be highly correlated. Hold as many of these fixed as 

possible. 

  

The 2D scattering intensity is the same as P(q) of 1D, regardless of the orientation of the q 

vector. 

  

For P*S: The outer most radius (= radius + 4 thicknesses) is used as the effective radius toward 

S(Q) if P(Q)*S(Q) is applied.  

  

The returned value is scaled to units of [cm
-1

] and the parameters of the CoreFourshell sphere 

model are the following: 

Here, rad_core = the radius of the core,  thick_shelli = the thickness of the shell i and sld_shelli = 

the SLD of the shell i. 

And the sld_core and the sld_solv are the SLD of the core and the solvent, respectively. 

  

Parameter name Units Default value 

scale None 1.0 

rad_core Å 60 

sld_core Å
 -2

 6.4e-6 

sld_shell1 Å
 -2

 1e-6 

sld_shell2 Å
 -2

 2e-6 

sld_shell3 Å
 -2

 3e-6 

sld_shell4 Å
 -2

 4e-6 

sld_solv Å
 -2

 6.4e-6 

thick_shell1 Å 10 

thick_shell2 Å 10 

thick_shell3 Å 10 



thick_shell4 Å 10 

background cm
-1

 0.001 

  

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006). 

             

REFERENCE 

  

See the CoreShell documentation.  

  

TEST DATASET 

  

This example dataset is produced by running the CoreFourShellModel using 200 data points, 

qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the above default values. 

  

 
  

Figure. 1D plot using the default values (w/200 data point). 
  

  

  

  

2.5.                     VesicleModel 
  

This model provides the form factor, P(q), for an unilamellar vesicle. The form factor is 

normalized by the volume of the shell. 

The 1D scattering intensity is calculated in the following way (Guinier, 1955): 

  

  



  

  

  

where scale is a scale factor, Vshell is the volume of the shell, V1 is the volume of the core, V2 is 

the total volume, R1 is the radius of the core, r2 is the outer radius of the shell, ρ1 is the scattering 

length density of the core and the solvent, ρ2 is the scattering length density of the shell, and bkg 

is the background level. And J1 = (sinx - xcosx)/x
2
. The functional form is identical to a "typical" 

core-shell structure, except that the scattering is normalized by the volume that is contributing to 

the scattering, namely the volume of the shell alone. Also, the vesicle is best defined in terms of 

a core radius (= R1) and a shell thickness, t.   

  

  

 
  

  

The 2D scattering intensity is the same as P(q) above, regardless of the orientation of the q 

vector  which is defined as . 
For P*S: The outer most radius (= radius + thickness) is used as the effective radius toward S(Q) 

when P(Q)*S(Q) is applied.  

  

The returned value is scaled to units of [cm
-1

] and the parameters of the vesicle model are the 

following: 

In the parameters, the „radius‟ represents the core radius (R1) and the „thickness‟ (R2 – R1) is the 

shell thickness. 

  

Parameter name Units Default value 

scale None 1.0 

radius Å 100 

thickness Å 30 

core_sld Å
 -2

 6.3e-6 

shell_sld Å
 -2

 0 

background cm
-1

 0.0 

  

  



 
Figure. 1D plot using the default values (w/200 data point). 

  

  

  

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006). 

REFERENCE 

Guinier, A. and G. Fournet, "Small-Angle Scattering of X-Rays", John Wiley and Sons, New 

York, (1955). 

  

  

  

  

  

  

2.6.                     MultiShellModel 
  

This model provides the form factor, P(q), for a multi-lamellar vesicle with N shells where the 

core is filled with solvent and the shells are interleaved with layers of solvent. For N = 1, this 

return to the vesicle model (above). 

  

  



 
  

  

The 2D scattering intensity is the same as 1D, regardless of the orientation of the q vector which 

is defined as . 
For P*S: The outer most radius (= core_radius + n_pairs  * s_thickness  + (n_pairs -1) * 

w_thickness) is used as the effective radius toward S(Q) when P(Q)*S(Q) is applied.  

  

The returned value is scaled to units of [cm
-1

] and the parameters of the multi-shell model are the 

following: 

In the parameters, the „s_thickness‟ is the shell thickness while the „w_thickness‟ is the solvent 

thickness, and the n_pair is the number of shells. 

  

  

Parameter name Units Default value 

scale None 1.0 

core_radius Å 60.0 

n_pairs None 2.0 

core_sld Å
 -2

 6.3e-6 

shell_sld Å
 -2

 0.0 

background cm
-1

 0.0 

s_thickness Å 10 

w_thickness Å 10 

  

  



 
Figure. 1D plot using the default values (w/200 data point). 

  

  

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006). 

  

REFERENCE 

Cabane, B., Small Angle Scattering Methods, Surfactant Solutions: New Methods of 

Investigation, Ch.2, Surfactant Science Series Vol. 22, Ed. R. Zana, M. Dekker, New York, 

1987. 

  

  

  

  

2.7.                     BinaryHSModel 
  

This model (binary hard sphere model) provides the scattering intensity, for binary mixture of 

spheres including hard sphere interaction between those particles. Using Percus-Yevick closure, 

the calculation is an exact multi-component solution: 

  

 
  

  

where Sij are the partial structure factors and fi are the scattering amplitudes of the particles. And 

the subscript 1 is for the smaller particle and 2 is for the larger. The number fraction of the larger 

particle, (x =  n2/(n1+n2), n = the number density) is internally calculated based on: 

  

  



. 

  

  

  

The 2D scattering intensity is the same as 1D, regardless of the orientation of the q vector which 

is defined as . 
  

  

The parameters of the binary hard sphere are the following (in the names, l (or ls) stands for 

larger spheres while s (or ss) for the smaller spheres): 

  

Parameter name Units Default value 

background cm
-1

 0.001 

l_radius Å 100.0 

ss_sld Å
 -2

 0.0 

ls_sld Å
 -2

 3e-6 

solvent_sld Å
 -2

 6e-6 

s_radius Å 25.0 

vol_frac_ls Å 0.1 

vol_frac_ss Å 0.2 

  

  



 
Figure. 1D plot using the default values above (w/200 data point). 

  

  

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006). 

  

See the reference for details. 

  

REFERENCE 

N. W. Ashcroft and D. C. Langreth, Physical Review, v. 156 (1967) 685-692. 

[Errata found in Phys. Rev. 166 (1968) 934.] 

  

  

  

2.8.                     Cylinder Model 
  

This model provides the form factor for a right circular cylinder with uniform scattering length 

density. The form factor is normalized by the particle volume. 

  

1.1.     Definition 
  

The output of the 2D scattering intensity function for oriented cylinders is given by (Guinier, 

1955): 

  

  

  (4) 



    

  

  

where α is the angle between the axis of the cylinder and the q-vector, V is the volume of the 

cylinder, L is the length of the cylinder, r is the radius of the cylinder, and Δρ (contrast) is the 

scattering length density difference between the scatterer and the solvent. J1 is the first order 

Bessel function. 

  

To provide easy access to the orientation of the cylinder, we define the axis of the cylinder using 

two angles theta and phi. Those angles are defined on Figure 2. 

  

 
Figure 2a. Definition of the angles for oriented cylinders. 

  

  

 
Figure 2b. Examples of the angles for oriented cylinders against the detector plane. 

  



  

For P*S: The 2
nd

 virial coefficient of the cylinder is calculate based on the radius and length 

values, and used as the effective radius toward S(Q) when P(Q)*S(Q) is applied.  

  

The returned value is scaled to units of [cm
-1

] and the parameters of the cylinder model are the 

following: 

  

  

Parameter name Units Default value 

scale None 1.0 

radius Å 20.0 

length Å 400.0 

contrast Å
 -2

 3.0e-6 

background cm
-1

 0.0 

cyl_theta Radian 1.0 

cyl_phi Radian 1.0 

  

  

The output of the 1D scattering intensity function for randomly oriented cylinders is then given 

by: 

  

  

          

  

The cyl_theta and cyl_phi parameter are not used for the 1D output. Our implementation of the 

scattering kernel and the 1D scattering intensity use the c-library from NIST. 

  

  

  

  

2.1.     Validation of the cylinder model 
  

Validation of our code was done by comparing the output of the 1D model to the output of the 

software provided by the NIST (Kline, 2006). Figure 3 shows a comparison of the 1D output of 

our model and the output of the NIST software. 

  

In general, averaging over a distribution of orientations is done by evaluating the following: 

  



            

  

  

where p(θ,φ) is the probability distribution for the orientation and P0(q,α) is the scattering 

intensity for the fully oriented system. Since we have no other software to compare the 

implementation of the intensity for fully oriented cylinders, we can compare the result of 

averaging our 2D output using a uniform distribution p(θ,φ) = 1.0.  Figure 4 shows the result of 

such a cross-check. 

  

  

 
  

Figure 3: Comparison of the DANSE scattering intensity for a cylinder with the output of the NIST SANS 

analysis software. The parameters were set to: Scale=1.0, Radius=20 Å, Length=400 Å, Contrast=3e-6 Å
 -2

, 

and Background=0.01 cm
 -1

. 

  
  



 
  

Figure 4: Comparison of the intensity for uniformly distributed cylinders calculated from our 2D model and 

the intensity from the NIST SANS analysis software. The parameters used were: Scale=1.0, Radius=20 Å, 

Length=400 Å, Contrast=3e-6 Å
 -2

, and Background=0.0 cm
 -1

. 

  

  

  

2.9.                     Core-Shell Cylinder Model 
  

This model provides the form factor for a circular cylinder with a core-shell scattering length 

density profile. The form factor is normalized by the particle volume. 

  

1.1.     Definition 
  

The output of the 2D scattering intensity function for oriented core-shell cylinders is given by 

(Kline, 2006): 

  

  

  

  

  

where α is the angle between the axis of the cylinder and the q-vector, Vs is the volume of the 

outer shell, Vc is the volume of the core, L is the length of the core, r is the radius of the core, t is 

the thickness of the shell, ρc is the scattering length density of the core, ρs is the scattering length 

density of the shell, ρsolv is the scattering length density of the solvent, and bkg is the background 



level. The outer radius of the shell is given by r+t and the total length of the outer shell is given 

by L+2t. J1 is the first order Bessel function. 

  

  

 
  

  

To provide easy access to the orientation of the core-shell cylinder, we define the axis of the 

cylinder using two angles θ and φ. Similarly to the case of the cylinder, those angles are defined 

on Figure 2 in Cylinder Model. 

  

For P*S: The 2
nd

 virial coefficient of the solid cylinder is calculate based on the 

(radius+thickness) and 2(length +thickness) values, and used as the effective radius toward S(Q) 

when P(Q)*S(Q) is applied.  

  

  

The returned value is scaled to units of [cm
-1

] and the parameters of the core-shell cylinder 

model are the following: 

  

Parameter name Units Default value 

scale None 1.0 

radius Å 20.0 

thickness Å 10.0 

length Å 400.0 

core_sld Å
 -2

 1e-6 

shell_sld Å
 -2

 4e-6 

solvent_sld Å
 -2

 1e-6 

background cm
-1

 0.0 

axis_theta Radian 1.57 

axis_phi Radian 0.0 

  



The output of the 1D scattering intensity function for randomly oriented cylinders is then given 

by the equation above. 

  

The axis_theta and axis_phi parameters are not used for the 1D output. Our implementation of 

the scattering kernel and the 1D scattering intensity use the c-library from NIST. 

  

  

2.1.     Validation of the core-shell cylinder model 
  

Validation of our code was done by comparing the output of the 1D model to the output of the 

software provided by the NIST (Kline, 2006). Figure 8 shows a comparison of the 1D output of 

our model and the output of the NIST software. 

  

Averaging over a distribution of orientation is done by evaluating the equation above. Since we 

have no other software to compare the implementation of the intensity for fully oriented core-

shell cylinders, we can compare the result of averaging our 2D output using a uniform 

distribution p(θ,φ) = 1.0.  Figure 9 shows the result of such a cross-check. 

 
  

Figure 8: Comparison of the DANSE scattering intensity for a core-shell cylinder with the output of the NIST 

SANS analysis software. The parameters were set to: Scale=1.0, Radius=20 Å, Thickness=10 Å, Length=400 

Å, Core_sld=1e-6 Å
 -2

, Shell_sld=4e-6 Å
 -2

, Solvent_sld=1e-6 Å
 -2

, and Background=0.01 cm
 -1

. 

  

  

  



 
  

Figure 9: Comparison of the intensity for uniformly distributed core-shell cylinders calculated from our 2D 

model and the intensity from the NIST SANS analysis software. The parameters used were: Scale=1.0, 

Radius=20 Å, Thickness=10 Å, Length=400 Å, Core_sld=1e-6 Å
 -2

, Shell_sld=4e-6 Å
 -2

, Solvent_sld=1e-6 Å
 -2

, 

and Background=0.0 cm
 -1

. 

  

  

  

  

2.10.                     HollowCylinderModel 
  

This model provides the form factor, P(q), for a monodisperse hollow right angle circular 

cylinder (tube) where the form factor is normalized by the volume of the tube: 

P(q) = scale*<f^2>/Vshell+background where the averaging < > id applied only for the 1D 

calculation.  The inside and outside of the hollow cylinder have the same SLD. 

The 1D scattering intensity is calculated in the following way (Guinier, 1955): 

  

   

  

  

where scale is a scale factor, J1 is the 1
st
 order Bessel function, J1 (x)= (sinx - xcosx)/x

2
.  

  



 
  

  

  

  

To provide easy access to the orientation of the core-shell cylinder, we define the axis of the 

cylinder using two angles θ and φ. Similarly to the case of the cylinder, those angles are defined 

on Figure 2 in Cylinder Model. 

  

For P*S: The 2
nd

 virial coefficient of the solid cylinder is calculate based on the (radius) and 

2(length) values, and used as the effective radius toward S(Q) when P(Q)*S(Q) is applied.  

  

In the parameters, the „contrast‟ represents SLD (shell) - SLD (solvent) and the radius = Rhell 

while core_radius = Rcore. 

  

  

Parameter name Units Default value 

scale None 1.0 

radius Å 30 

length Å 400 

core_radius Å 20 

sldCyl Å
 -2

 6.3e-6 

sldSolv Å
 -2

 5e-06 

background cm
-1

 0.01 

  

  

  



 
Figure. 1D plot using the default values (w/1000 data point). 

  

  

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006). 

  

REFERENCE 

Feigin, L. A, and D. I. Svergun, "Structure Analysis by Small-Angle X-Ray and Neutron 

Scattering", Plenum Press, New York, (1987). 

  

  

  

  

  

2.11.                     FlexibleCylinderModel 
  

This model provides the form factor, P(q), for a flexible cylinder where the form factor is 

normalized by the volume of the cylinder: Inter-cylinder interactions are NOT included. P(q) = 

scale*<f^2>/V+background where the averaging < >  is applied over all orientation for 1D.  The 

2D scattering intensity is the same as 1D, regardless of the orientation of the q vector which is 

defined as . 
  

 



  

  

The chain of contour length, L, (the total length) can be described a chain of some number of 

locally stiff segments of length lp. The persistence length,lp, is the length along the cylinder over 

which the flexible cylinder can be considered a rigid rod. The Kuhn length (b = 2*lp) is also used 

to describe the stiffness of a chain. The returned value is in units of [cm-1], on absolute scale. In 

the parameters, the sldCyl and sldSolv  represent SLD (chain/cylinder)  and SLD (solvent) 

respectively. 

  

  

Parameter name Units Default value 

scale None 1.0 

radius Å 20 

length Å 1000 

sldCyl Å
 -2

 1e-06 

sldSolv Å
 -2

 6.3e-06 

background cm
-1

 0.01 

kuhn_length Å 100 

  

  

 
Figure. 1D plot using the default values (w/1000 data point). 

  

  

  

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 



From the reference, "Method 3 With Excluded Volume" is used. The model is a parametrization 

of simulations of a discrete representation of the worm-like chain model of Kratky and Porod 

applied in the pseudocontinuous limit.  See equations (13,26-27) in the original reference for the 

details. 

  

REFERENCE 

Pedersen, J. S. and P. Schurtenberger (1996). “Scattering functions of semiflexible polymers 

with and without excluded volume effects.” Macromolecules 29: 7602-7612.  

Correction of the formula can be found in: 

Wei-Ren Chen, Paul D. Butler, and Linda J. Magid, "Incorporating Intermicellar Interactions in 

the Fitting of SANS Data from Cationic Wormlike Micelles" Langmuir, August 2006. 

  

  

  

2.12.                     FlexCylEllipXModel 
  

Flexible Cylinder with Elliptical Cross-Section:  Calculates the form factor for a flexible 

cylinder with an elliptical cross section and a uniform scattering length density. The non-

negligible diameter of the cylinder is included by accounting for excluded volume interactions 

within the walk of a single cylinder. The form factor is normalized by the particle volume such 

that P(q) = scale*<f^2>/Vol + bkg, where < > is an average over all possible orientations of the 

flexible cylinder.  

  

1.1.     Definition 
  

The function calculated is from the reference given below. From that paper, "Method 3 With 

Excluded Volume" is used. The model is a parameterization of simulations of a discrete 

representation of the worm-like chain model of Kratky and Porod applied in the pseudo-

continuous limit.  See equations (13, 26-27) in the original reference for the details. 

  

NOTE: there are several typos in the original reference that have been corrected by WRC. 

Details of the corrections are in the reference below. 

 - Equation (13): the term (1-w(QR)) should swap position with w(QR) 

 - Equations (23) and (24) are incorrect. WRC has entered these into Mathematica and solved 

analytically. The results were converted to code. 

 - Equation (27) should be q0 = max(a3/sqrt(RgSquare),3) instead of 

max(a3*b/sqrt(RgSquare),3) 

 - The scattering function is negative for a range of parameter values and q-values that are 

experimentally accessible. A correction function has been added to give the proper behavior. 

  



 
  

The chain of contour length, L, (the total length) can be described a chain of some number of 

locally stiff segments of length lp. The persistence length, lp, is the length along the cylinder 

over which the flexible cylinder can be considered a rigid rod. The Kuhn length (b) used in the 

model is also used to describe the stiffness of a chain, and is simply b = 2*lp. 

  

The cross section of the cylinder is elliptical, with minor radius a. The major radius is larger, so 

of course, the axis ratio (parameter 4) must be greater than one. Simple constraints should be 

applied during curve fitting to maintain this inequality. 

  

The returned value is in units of [cm-1], on absolute scale. 

  

The sldCyl  = SLD (chain), sldSolv = SLD (solvent). The „scale‟, and the contrast are both 

multiplicative factors in the model and are perfectly correlated. One or both of these parameters 

must be held fixed during model fitting. 

  

If the „scale‟ is set equal to the particle volume fraction, , the returned value is the scattered 

intensity per unit volume, I(q) = *P(q). However, no inter-particle interference effects are 

included in this calculation. 

For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the q vector 

is defined as . 
  

REFERENCE 

Pedersen, J. S. and P. Schurtenberger (1996). “Scattering functions of semiflexible polymers 

with and without excluded volume effects.” Macromolecules 29: 7602-7612.  

  

Corrections are in: 

  

Wei-Ren Chen, Paul D. Butler, and Linda J. Magid, "Incorporating Intermicellar Interactions in 

the Fitting of SANS Data from Cationic Wormlike Micelles" Langmuir, August 2006. 

             

TEST DATASET 

This example dataset is produced by running the Macro FlexCylEllipXModel, using 200 data 

points, qmin = 0.001 Å-1,  qmax = 0.7 Å-1 and the default values below. 

  

Parameter name Units Default value 



axis_ratio  1.5 

background cm
-1

 0.0001 

Kuhn_length Å 100 

(Contour) length Å 1e+3 

radius Å 20.0 

scale  1.0 

sldCyl Å
 -2

 1e-6 

sldSolv Å
 -2

 6.3e-6 

  

  

 
Figure. 1D plot using the default values (w/200 data point). 

  

  

  

  

  

2.13.                StackedDisksModel  
  

This model provides the form factor, P(q), for stacked discs (tactoids) with a core/layer structure 

where the form factor is normalized by the volume of the cylinder.  Assuming the next neighbor 

distance (d-spacing) in a stack of parallel discs obeys a Gaussian distribution, a structure factor 

S(q) proposed by Kratky and Porod in 1949 is used in this function. Note that the resolution 

smearing calculation uses 76 Gauss quadrature points to properly smear the model since the 

function is HIGHLY oscillatory, especially around the q-values that correspond to the repeat 

distance of the layers. 



The 2D scattering intensity is the same as 1D, regardless of the orientation of the q vector which 

is defined as . 

  
  

          

  

 
  

  

  

The returned value is in units of [cm
-1

 sr
-1

], on absolute scale.  

The scattering intensity I(q) is: 

  

 
  

where the contrast, 

 
  

  

N is the number of discs per unit volume,  is the angle between the axis of the disc and q, and 

Vt and Vc are the total volume and the core volume of a single disc, respectively. 

  

  

 
  

  

where d = thickness of the layer (layer_thick), 2h= core thickness (core_thick),  and R = radius 

of the disc (radius). 

  



  

 
  

  

where n = the total number of the disc stacked (n_stacking), D=the next neighbor center to cent 

distance (d-spacing), and D = the Gaussian standard deviation of the d-spacing (sigma_d). 

  

To provide easy access to the orientation of the stackeddisks, we define the axis of the cylinder 

using two angles θ and φ. Similarly to the case of the cylinder, those angles are defined on 

Figure 2 of CylinderModel. 

  

  

 For P*S: The 2
nd

 virial coefficient of the solid cylinder is calculate based on the (radius) and 

length = n_stacking*(core_thick +2*layer_thick) values, and used as the effective radius toward 

S(Q) when P(Q)*S(Q) is applied.  

  

  

  

Parameter name Units Default value 

background cm
-1

 0.001 

core_sld Å
 -2

 4e-006 

core_thick Å 10 

layer_sld Å
 -2

 0 

layer_thick Å 15 

n_stacking   1 

radius Å 3e+003 

scale   0.01 

sigma_d   0 

solvent_sld Å
 -2

 5e-006 

  

  



 
Figure. 1D plot using the default values (w/1000 data point). 

  

  

 
Figure. Examples of the angles for oriented stackeddisks against the detector plane. 

  

  

  

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 

  

REFERENCE 

Guinier, A. and Fournet, G., "Small-Angle Scattering of X-Rays", John Wiley and Sons, New 

York, 1955. 

Kratky, O. and Porod, G., J. Colloid Science, 4, 35, 1949.  

Higgins, J.S. and Benoit, H.C., "Polymers and Neutron Scattering", Clarendon, Oxford, 1994. 

  

  

  



  

  

  

2.14.                ParallelepipedModel 
  

This model provides the form factor, P(q), for a rectangular cylinder (below) where the form 

factor is normalized by the volume of the cylinder. P(q) = scale*<f^2>/V+background where the 

volume V= ABC and the averaging < >  is applied over all orientation for 1D.   

  

 
  

  

The side of the solid must be satisfied the condition of A<B<C in order for the calculation to be 

correct: where A = short_a, B=short_b, and C=long_c for the fitting parameters. 

By this definition, assuming  

a = A/B<1; b=B/B=1; c=C/B>1, the form factor, 

  

 
  

The contrast is defined as 

  

 
  

  

The scattering intensity per unit volume is returned in the unit of [cm
-1

];  I(q) = P(q). 

  

For P*S: The 2
nd

 virial coefficient of the solid cylinder is calculate based on the averaged radius 

(= sqrt(short_a*short_b/pi)) and length( = long_c) values, and used as the effective radius toward 

S(Q) when P(Q)*S(Q) is applied.  

  



  

To provide easy access to the orientation of the parallelepiped, we define the axis of the cylinder 

using two angles θ , φ and  . Similarly to the case of the cylinder, those angles, θ  and φ, are 

defined on Figure 2 of CylinderModel. The angle is the rotational angle around its own long_c 

axis against the q plane. For example, = 0 when the short_b axis is parallel to the x-axis of the 

detector. 

  

 
Figure. Definition of angels for 2D. 

  

  

 
Figure. Examples of the angles for oriented elliptical cylinders against the detector plane. 

  

  

  

Parameter name Units Default value 

background cm
-1

 0.0 

contrast Å
 -2

 5e-006 



long_c Å 400 

short_a Å
 -2

 35 

short_b Å 75 

scale   1 

  

  

 
Figure. 1D plot using the default values (w/1000 data point). 

  

  

  

         Validation of the parallelepiped 2D model 
  

Validation of our code was done by comparing the output of the 1D calculation to the angular 

average of the output of 2 D calculation over all possible angles. The Figure below shows the 

comparison where the solid dot refers to averaged 2D while the line represents the result of 1D 

calculation (for the averaging, 76, 180, 76 points are taken over the angles of theta, phi, and psi 

respectively). 

  

  



 
Figure. Comparison between 1D and averaged 2D. 

  

  

  

  

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 

  

REFERENCE 

Mittelbach and Porod, Acta Physica Austriaca 14 (1961) 185-211. 

Equations (1), (13-14). (in German) 

  
  

  

  

2.15.                Elliptical Cylinder Model 
  

This function calculates the scattering from an oriented elliptical cylinder.  

  

For 2D (orientated system): 
  

The angles theta and phi define the orientation of the axis of the cylinder. The angle psi is 

defined as the orientation of the major axis of the ellipse with respect to the vector Q. A gaussian 

poydispersity can be added to any of the orientation angles, and also for the minor radius and the 

ratio of the ellipse radii. 

  



 
  

Figure. a= r_minor and = r_ratio (i.e., r_major/r_minor). 
  

The function calculated is: 

  

  

  

  

with the functions: 

  

          (13) 

  

  

  

and the angle psi is defined as the orientation of the major axis of the ellipse with respect to the 

vector Q. 

  

For 1D (no preferred orientation): 
The form factor is averaged over all possible orientation before normalized by the particle 

volume: P(q) = scale*<f^2>/V . 

  

The returned value is scaled to units of [cm
-1

].  

  

  

To provide easy access to the orientation of the elliptical, we define the axis of the cylinder using 

two angles θ , φ and  . Similarly to the case of the cylinder, those angles, θ  and φ, are defined 

on Figure 2 of CylinderModel. The angle is the rotational angle around its own long_c axis 

against the q plane. For example, = 0 when the r_minor axis is parallel to the x-axis of the 

detector. 

  

All angle parameters are valid and given only for 2D calculation (Oriented system). 



  

  

 
Figure. Definition of angels for 2D. 

  

 
Figure. Examples of the angles for oriented elliptical cylinders  

against the detector plane. 

  

  
For P*S: The 2

nd
 virial coefficient of the solid cylinder is calculate based on the averaged radius 

(=sqrt(r_minor^2*r_ratio))  and length values, and used as the effective radius toward S(Q) when 

P(Q)*S(Q) is applied.  

  

  

Parameter name Units Default value 

scale None 1.0 

r_minor Å 20.0 



r_ratio Å 1.5 

length Å 400.0 

contrast Å
 -2

 3e-6 

cyl_phi Å
 -2

 0 

cyl_psi Å
 -2

 0 

cyl_theta radian 1.57 

background   0 

  

  

 
Figure. 1D plot using the default values (w/1000 data point). 

  

  

         Validation of the elliptical cylinder 2D model 
  

Validation of our code was done by comparing the output of the 1D calculation to the angular 

average of the output of 2 D calculation over all possible angles. The Figure below shows the 

comparison where the solid dot refers to averaged 2D while the line represents the result of 1D 

calculation (for 2D averaging, 76, 180, 76 points are taken for the angles of theta, phi, and psi 

respectively). 

  

  



 
Figure. Comparison between 1D and averaged 2D. 

  
In the 2D average, more binning in the angle phi is necessary to get the proper result. The 

following figure shows the results of the averaging by varying the number of bin over angles. 

  

 
Figure. The intensities averaged from 2D over different number  

of points of binning of angles. 
  

  

REFERENCE 

  

L. A. Feigin and D. I. Svergun “Structure Analysis by Small-Angle X-Ray and Neutron 

Scattering”, Plenum, New York, (1987). 

  

  



2.16.                Ellipsoid Model 
  

This model provides the form factor for an ellipsoid (ellipsoid of revolution) with uniform 

scattering length density. The form factor is normalized by the particle volume. 

  

1.1.     Definition 
  

The output of the 2D scattering intensity function for oriented ellipsoids is given by (Feigin, 

1987): 

  

  

    

  

     

  

      

  

  

  

where α is the angle between the axis of the ellipsoid and the q-vector, V is the volume of the 

ellipsoid, Ra is the radius along the rotation axis of the ellipsoid, Rb is the radius perpendicular to 

the rotation axis of the ellipsoid and Δρ (contrast) is the scattering length density difference 

between the scatterer and the solvent.  

  

To provide easy access to the orientation of the ellipsoid, we define the rotation axis of the 

ellipsoid using two angles θ and φ. Similarly to the case of the cylinder, those angles are defined 

on Figure 2. For the ellipsoid, θ is the angle between the rotation axis and the z-axis.  

  

For P*S: The 2
nd

 virial coefficient of the solid ellipsoid is calculate based on the radius_a and 

radius_b values, and used as the effective radius toward S(Q) when P(Q)*S(Q) is applied.  

  

The returned value is scaled to units of [cm
-1

] and the parameters of the ellipsoid model are the 

following: 

  

  

Parameter name Units Default value 

scale None 1.0 

radius_a (polar) Å 20.0 

radius_b (equatorial) Å 400.0 

sldEll Å
 -2

 4.0e-6 



sldSolv Å
 -2

 1.0e-6 

background cm
-1

 0.0  

axis_theta Radian 1.57 

axis_phi Radian 0.0 

  

The output of the 1D scattering intensity function for randomly oriented ellipsoids is then given 

by the equation above. 

  

The axis_theta and axis_phi parameters are not used for the 1D output. Our implementation of 

the scattering kernel and the 1D scattering intensity use the c-library from NIST. 

  

 
Figure. Examples of the angles for oriented ellipsoid  

against the detector plane. 

  

  

2.1.     Validation of the ellipsoid model 
  

Validation of our code was done by comparing the output of the 1D model to the output of the 

software provided by the NIST (Kline, 2006). Figure 5 shows a comparison of the 1D output of 

our model and the output of the NIST software. 

  

Averaging over a distribution of orientation is done by evaluating the equation above. Since we 

have no other software to compare the implementation of the intensity for fully oriented 

ellipsoids, we can compare the result of averaging our 2D output using a uniform distribution 

p(θ,φ) = 1.0.  Figure 6 shows the result of such a cross-check. 

  
The discrepancy above q=0.3 Å

 -1
 is due to the way the form factors are calculated in the c-

library provided by NIST. A numerical integration has to be performed to obtain P(q) for 



randomly oriented particles. The NIST software performs that integration with a 76-point 

Gaussian quadrature rule, which will become imprecise at high q where the amplitude varies 

quickly as a function of q. The DANSE result shown has been obtained by summing over 501 

equidistant points in α. Our result was found to be stable over the range of q shown for a number 

of points higher than 500. 

 
Figure 5: Comparison of the DANSE scattering intensity for an ellipsoid with the output of the NIST SANS 

analysis software. The parameters were set to: Scale=1.0, Radius_a=20 Å, Radius_b=400 Å,  

Contrast=3e-6 Å
 -2

, and Background=0.01 cm
 -1

. 

  

  

 
Figure 6: Comparison of the intensity for uniformly distributed ellipsoids calculated from our 2D model and 

the intensity from the NIST SANS analysis software. The parameters used were: Scale=1.0, Radius_a=20 Å, 

Radius_b=400 Å, Contrast=3e-6 Å
 -2

, and Background=0.0 cm
 -1

. 

  

  

  

  

  

  

2.17.                CoreShellEllipsoidModel  



  

This model provides the form factor, P(q), for a core shell ellipsoid (below) where the form 

factor is normalized by the volume of the cylinder. P(q) = scale*<f^2>/V+background where the 

volume V= 4pi/3*rmaj*rmin
2
 and the averaging < >  is applied over all orientation for 1D.   

  

  

    

  

  

  

The returned value is in units of [cm
-1

], on absolute scale.  

The form factor calculated is: 

  

 
  

  

  

To provide easy access to the orientation of the coreshell ellipsoid, we define the axis of the solid 

ellipsoid using two angles θ , φ. Similarly to the case of the cylinder, those angles, θ  and φ, are 

defined on Figure 2 of CylinderModel.  

  

The contrast is defined as SLD(core) – SLD(shell) or SLD(shell – solvent). In the parameters, 

equat_core = equatorial radius of the core, polar_core = polar radius of the core, equat_shell = 

rmin (or equatorial radius of the shell), and polar_shell = = rmaj (or polar radius of the shell). 

  

For P*S: The 2
nd

 virial coefficient of the solid ellipsoid is calculate based on the radius_a (= 

polar_shell) and radius_b (= equat_shell) values, and used as the effective radius toward S(Q) 

when P(Q)*S(Q) is applied.  

  

Parameter name Units Default value 

background cm
-1

 0.001 

equat_core Å 200 



equat_shell Å 250 

sld_solvent Å
 -2

 6e-006 

ploar_shell Å 30 

ploar_core Å 20 

scale   1 

sld_core Å
 -2

 2e-006 

sld_shell Å
 -2

 1e-006 

  

  

 
Figure. 1D plot using the default values (w/1000 data point). 

  
  

 
Figure. Examples of the angles for oriented coreshellellipsoid against the detector plane where a 

=polar axis. 



  

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 

  

REFERENCE 

Kotlarchyk, M.; Chen, S.-H. J. Chem. Phys., 1983, 79, 2461. 

Berr, S.  J. Phys. Chem., 1987, 91, 4760. 

  

  

  

  

  

2.18.                TriaxialEllipsoidModel 
  

This model provides the form factor, P(q), for an ellipsoid (below) where all three axes are of 

different lengths, i.e.,  Ra =< Rb =< Rc (Note that users should maintains this inequality for the all 

calculations).  P(q) = scale*<f^2>/V+background where the volume V= 4pi/3*Ra*Rb*Rc, and the 

averaging < >  is applied over all orientation for 1D.   

  

    

  

   

The returned value is in units of [cm
-1

], on absolute scale.  

The form factor calculated is: 

  

 
  

  

  

  

To provide easy access to the orientation of the triaxial ellipsoid, we define the axis of the 

cylinder using the angles θ , φ and  . Similarly to the case of the cylinder, those angles, θ  and 

φ, are defined on Figure 2 of CylinderModel. The angle is the rotational angle around its own 



semi_axisC axis against the q plane. For example, = 0 when the semi_axisA axis is parallel to 

the x-axis of the detector. 

  

The radius of gyration for this system is Rg
2
 = (Ra

2
*Rb

2
*Rc

2
)/5.  The contrast is defined as 

SLD(ellipsoid) – SLD(solvent). In the parameters, semi_axisA = Ra (or minor equatorial radius), 

semi_axisB = Rb (or major equatorial radius), and semi_axisC = Rc (or polar radius of the 

ellipsoid). 

  

For P*S: The 2
nd

 virial coefficient of the solid ellipsoid is calculate based on the radius_a 

(=semi_axisC) and radius_b (=sqrt(semi_axisA* semi_axisB))  values, and used as the effective 

radius toward S(Q) when P(Q)*S(Q) is applied.  

  

  

Parameter name Units Default value 

background cm
-1

 0.0 

semi_axisA Å 35 

semi_axisB Å 100 

semi_axisC Å
 
 400 

scale   1 

sldEll Å
 -2

 1.0e-006 

sldSolv Å
 -2

 6.3e-006 

  

  

 
Figure. 1D plot using the default values (w/1000 data point). 

  

  

         Validation of the triaxialellipsoid 2D model 



  

Validation of our code was done by comparing the output of the 1D calculation to the angular 

average of the output of 2 D calculation over all possible angles. The Figure below shows the 

comparison where the solid dot refers to averaged 2D while the line represents the result of 1D 

calculation (for 2D averaging, 76, 180, 76 points are taken for the angles of theta, phi, and psi 

respectively). 

  

  

 
Figure. Comparison between 1D and averaged 2D. 

  

  

 
Figure. Examples of the angles for oriented ellipsoid against the detector plane. 

  

  

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 



  

REFERENCE 

L. A. Feigin and D. I. Svergun “Structure Analysis by Small-Angle X-Ray and Neutron 

Scattering”, Plenum, New York, 1987. 

  

  

  

2.19.                LamellarModel 
  

This model provides the scattering intensity, I(q), for a lyotropic lamellar phase where a uniform 

SLD and random distribution in solution are assumed.  The ploydispersion in the bilayer 

thickness can be applied from the GUI. 

  

The scattering intensity I(q) is: 

  

 
The form factor is, 

  

 
  

where  = bilayer thickness. 

The 2D scattering intensity is calculated in the same way as 1D, where the q vector is defined as

. 

  
The returned value is in units of [cm

-1
], on absolute scale. In the parameters, sld_bi = SLD of the 

bilayer, sld_sol = SLD of the solvent, and bi_thick = the thickness of the bilayer. 

  

  

Parameter name Units Default value 

background cm
-1

 0.0 

sld_bi Å
 -2

 1e-006 

bi_thick Å 50 

sld_sol Å
 -2

 6e-006 

scale   1 

  

  



 
Figure. 1D plot using the default values (w/1000 data point). 

  

  

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 

  

REFERENCE 

Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502. 

            also in J. Phys. Chem. B, 105, (2001) 11081-11088. 

  

  

  

  

2.20.                LamellarFFHGModel 
  

This model provides the scattering intensity, I(q), for a lyotropic lamellar phase where a random 

distribution in solution are assumed.  The SLD of the head region is taken to be different from 

the SLD of the tail region. 

  

The scattering intensity I(q) is: 

  

  

 
  

The form factor is, 

  

 
  



  

where  = tail length (or t_length),  = heasd thickness (or h_thickness) , H = SLD 

(headgroup) - SLD(solvent), and T = SLD (tail) - SLD(headgroup). 

  

The 2D scattering intensity is calculated in the same way as 1D, where the q vector is defined as

. 

  
The returned value is in units of [cm

-1
], on absolute scale. In the parameters, sld_tail = SLD of 

the tail group, and sld_head = SLD of the head group. 

  

  

Parameter name Units Default value 

background cm
-1

 0.0 

sld_head Å
 -2

 3e-006 

scale   1 

sld_solvent Å
 -2

 6e-006 

h_thickness Å 10 

t_length Å 15 

sld_tail Å
 -2

 0 

  

  

 
Figure. 1D plot using the default values (w/1000 data point). 

  

  

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 



  

REFERENCE 

Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502. 

            also in J. Phys. Chem. B, 105, (2001) 11081-11088. 

  

  

  

  

  

2.21.                LamellarPSModel 
  

This model provides the scattering intensity (form factor * structure factor), I(q), for a 

lyotropic lamellar phase where a random distribution in solution are assumed. 

  

The scattering intensity I(q) is: 

  

 
  

The form factor is 

  

  

 
and the structure is  

  

  

 
  

where  

  

  

 
  

  



Here d= (repeat) spacing,  = bilayer thickness, the contrast  = SLD (headgroup) - 

SLD(solvent), K=smectic bending elasticity, B=compression modulus, and N = number of 

lamellar plates (n_plates). 

Note: When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of the 

model are incorrect. And due to the complication of the model function, users are responsible to 

make sure that all the assumptions are handled accurately: see the original reference (below) for 

more details. 

The 2D scattering intensity is calculated in the same way as 1D, where the q vector is defined as

. 
The returned value is in units of [cm

-1
], on absolute scale.  

  

  

Parameter name Units Default value 

background cm
-1

 0.0 

contrast Å
 -2

 5e-006 

scale   1 

delta Å 30 

n_plates   20 

spacing Å 400 

caille Å
 -2

 0.1 

  

  

 
Figure. 1D plot using the default values (w/6000 data point). 

  

  



Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 

  

REFERENCE 

Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502. 

            also in J. Phys. Chem. B, 105, (2001) 11081-11088. 

  

  

  

  

  

2.22.                LamellarPSHGModel 
  

This model provides the scattering intensity (form factor * structure factor), I(q), for a 

lyotropic lamellar phase where a random distribution in solution are assumed.  The SLD of the 

head region is taken to be different from the SLD of the tail region. 

  

The scattering intensity I(q) is: 

  

 
  

The form factor is, 

  

 
  

The structure factor is 

  

 
  

  

where  

  

 
  

  



  

where  = tail length (or t_length),  = heasd thickness (or h_thickness) , H = SLD 

(headgroup) - SLD(solvent), and T = SLD (tail) - SLD(headgroup). Here d= (repeat) spacing, 

K=smectic bending elasticity, B=compression modulus, and N = number of lamellar plates 

(n_plates). 

Note: When the Caille parameter is greater than approximately 0.8 to 1.0, the assumptions of the 

model are incorrect. And due to the complication of the model function, users are responsible to 

make sure that all the assumptions are handled accurately: see the original reference (below) for 

more details. 

  

The 2D scattering intensity is calculated in the same way as 1D, where the q vector is defined as

. 

  
The returned value is in units of [cm

-1
], on absolute scale. In the parameters, sld_tail = SLD of 

the tail group, sld_head = SLD of the head group, and sld_solvent = SLD of the solvent. 

  

  

Parameter name Units Default value 

background cm
-1

 0.001 

sld_head Å
 -2

 2e-006 

scale   1 

sld_solvent Å
 -2

 6e-006 

deltaH Å 2 

deltaT Å 10 

sld_tail Å
 -2

 0 

n_plates   30 

spacing Å 40 

caille Å
 -2

 0.001 

  

  



 
Figure. 1D plot using the default values (w/6000 data point). 

  

  

Our model uses the form factor calculations implemented in a c-library provided by the NIST 

Center for Neutron Research (Kline, 2006): 

  

REFERENCE 

Nallet, Laversanne, and Roux, J. Phys. II France, 3, (1993) 487-502. 

            also in J. Phys. Chem. B, 105, (2001) 11081-11088. 

  

  

  

  

  

  

  

3.    Shape-Independent Models  
  

The following are models used for shape-independent SANS analysis. 

  

3.1.                      Debye (Model) 

  

The Debye model is a form factor for a linear polymer chain. In addition to the radius of 

gyration, Rg, a scale factor "scale", and a constant background term are included in the 

calculation.  

  

  



 
  

  

For 2D plot, the wave transfer is defined as . 

  
Parameter name Units Default value 

scale None 1.0 

rg Å 50.0 

background cm
-1

 0.0 

  

 
Figure. 1D plot using the default values (w/200 data point). 

  

  

Reference: Roe, R.-J., "Methods of X-Ray and Neutron Scattering in Polymer Science", 

Oxford University Press, New York (2000). 

  

3.2.                      (Ornstein-Zernicke) Lorentz (Model) 
  

The Ornstein-Zernicke model is defined by: 

  

 
  

The parameter L is referred to as the screening length. 

  



For 2D plot, the wave transfer is defined as . 
  

  
Parameter name Units Default value 

scale None 1.0 

length Å 50.0 

background cm
-1

 0.0 

  

 
 Figure. 1D plot using the default values (w/200 data point). 

  

  

  

3.3.                      DAB (Debye-Anderson-Brumberger)_Model 

  
Calculates the scattering from a randomly distributed, two-phase system based on the Debye-

Anderson-Brumberger (DAB) model for such systems. The two-phase system is 

characterized by a single length scale, the correlation length, which is a measure of the 

average spacing between regions of phase 1 and phase 2. The model also assumes smooth 

interfaces between the phases and hence exhibits Porod behavior (I ~ Q
-4

) at large Q 

(Q*correlation length >> 1).  

  

 
  

  
The parameter L is referred to as the correlation length. 

  



For 2D plot, the wave transfer is defined as . 
  

  
Parameter name Units Default value 

scale None 1.0 

length Å 50.0 

background cm
-1

 0.0 

  

 
 Figure. 1D plot using the default values (w/200 data point). 

  

  

References:  

Debye, Anderson, Brumberger, "Scattering by an Inhomogeneous Solid. II. The 

Correlation Function and its Application", J. Appl. Phys. 28 (6), 679 (1957). 

  

Debye, Bueche, "Scattering by an Inhomogeneous Solid", J. Appl. Phys. 20, 518 (1949). 

  

  

3.4.                       Power_Law  

  
This model describes a power law with background. 

  

 
  

  
Note the minus sign in front of the exponent. 



  
Parameter name Units Default value 

Scale None 1.0 

m None 4 

Background cm
-1

 0.0 

  

 
Figure. 1D plot using the default values (w/200 data point). 

  

  

3.5.                      Teubner Strey (Model) 

  
This function calculates the scattered intensity of a two-component system using the 

Teubner-Strey model. 

  

 
  

  

For 2D plot, the wave transfer is defined as . 

  
Parameter name Units Default value 

scale None 0.1 

c1 None -30.0 

c2 None 5000.0 

background cm
-1

 0.0 



  

 
Figure. 1D plot using the default values (w/200 data point). 

  

References:  

Teubner, M; Strey, R. J. Chem. Phys., 87, 3195 (1987). 

  

Schubert, K-V., Strey, R., Kline, S. R. and E. W. Kaler, J. Chem. Phys., 101, 5343 

(1994). 

  

  

  

3.6.                       FractalModel 

  
Calculates the scattering from fractal-like aggregates built from spherical building blocks 

following the Texiera reference. The value returned is in cm
-1

. 

  

  

 
  

  

  



The scale parameter is the volume fraction of the building blocks, R0 is the radius of the 

building block, Df is the fractal dimension, ξ is the correlation length, ρsolvent is the scattering 

length density of the solvent, and ρblock is the scattering length density of the building blocks.  

  

The polydispersion in radius is provided. 

For 2D plot, the wave transfer is defined as . 
  

  
Parameter name Units Default value 

scale None 0.05 

radius Å 5.0 

fractal_dim None 2 

corr_length Å 100.0 

block_sld Å
-2

 2e-6 

solvent_sld Å
-2

 6e-6 

background cm
-1

 0.0 

  

 
Figure. 1D plot using the default values (w/200 data point). 

  

  

References:  

J. Teixeira, (1988) J. Appl. Cryst., vol. 21, p781-785 

  

  

3.7.                       BEPolyelectrolyte Model 

  



Calculates the structure factor of a polyelectrolyte solution with the RPA expression derived 

by Borue and Erukhimovich. The value returned is in cm
-1

. 

  

 
  

  
  

K is a contrast factor of the polymer, Lb is the Bjerrum length, h is the virial parameter, b is 

the monomer length, Cs is the concentration of monovalent salt, α is the ionization degree, Ca 

is the polymer molar concentration, and background is the incoherent background. 

  

For 2D plot, the wave transfer is defined as . 
  

  
Parameter name Units Default value 

K Barns = 10
-24

 cm
2
 10 

Lb Å 7.1 

h Å
-3

 12 

b Å 10 

Cs Mol/L 0 

alpha None 0.05 

Ca Mol/L 0.7 

background cm
-1

 0.0 

  
References:  

Borue, V. Y., Erukhimovich, I. Y. Macromolecules 21, 3240 (1988). 

Joanny, J.-F., Leibler, L. Journal de Physique 51, 545 (1990). 

Moussaid, A., Schosseler, F., Munch, J.-P., Candau, S. J. Journal de Physique II France  

3, 573 (1993). 

Raphaël, E., Joanny, J.-F., Europhysics Letters 11, 179 (1990). 

  

  

3.8.                      Guinier (Model) 

  



A Guinier analysis is done by linearizing the data at low q by plotting it as log(I) versus Q
2
. 

The Guinier radius Rg can be obtained by fitting the following model: 

  

  

 
  

  

For 2D plot, the wave transfer is defined as . 

  
Parameter name Units Default value 

scale cm
-1

 1.0 

Rg Å 0.1 

  

  

3.9.                      PorodModel 

  
A Porod analysis is done by linearizing the data at high q by plotting it as log(I) versus 

log(Q). In the high q region we can fit the following model:  

  

 
  

  
C is the scale factor and  Sv is the specific surface area of the sample and Δρ is the contrast 

factor.  

The background term is added for data analysis. 

  

For 2D plot, the wave transfer is defined as . 
  

  
Parameter name Units Default value 

scale Å
-4

 0.1 

background cm
-1

 0 

  
  

  

3.10       Poly_GaussCoil (Model) 

  



Polydisperse Gaussian Coil: Calculate an empirical functional form for scattering from a 

polydisperse polymer chain ina good solvent. The polymer is polydisperse with a Schulz-

Zimm polydispersity of the molecular weight distribution.  

The returned value is scaled to units of [cm-1sr-1], absolute scale. 

 
  

where the dimensionless chain dimension is: 

 
  

and the polydispersion is 

. 

The scattering intensity I(q) is calculated as: 

  

The polydispersion in „rg‟ is provided. 

  

For 2D plot, the wave transfer is defined as . 
  

TEST DATASET 

 This example dataset is produced by running the Poly_GaussCoil, using 200 data points, 

qmin = 0.001 Å-1,  qmax = 0.7 Å-1   and the default values below. 

  

Parameter name Units Default value 

Scale None 1.0 

rg Å 60.0 

poly_m Mw/Mn 2 

background cm
-1

 0.001 

  



 
Figure. 1D plot using the default values (w/200 data point). 

  

Reference:  

Glatter & Kratky - pg.404. 

J.S. Higgins, and H.C. Benoit, “Polymers and Neutron Scattering”, Oxford Science 

Publications (1996). 

  

  

  

3.11.                 Peak Gauss Model 

  
This Gaussian peak model with a flat background calculates: 

  

 
  

  
where „scale‟ is the peak height centered at q0, and B refers to the standard deviation of the 

function (equivalently, the FWHM is 2.54*B). 

The background term is added for data analysis.  

  

For 2D plot, the wave transfer is defined as . 
  

  

  
Parameter name Units Default value 

scale cm
-1

 100 

B Å
-1

 0.005 

q0 Å
-1

 0.05 



background cm
-1

 1.0 

  

  

  

  

3.12.                 Peak Lorentz Model 

  
This Lorentzean peak model with a flat background calculates: 

  

 
  

  

  
where „scale‟ is the peak height centered at q0, and B refers to the standard deviation of the 

function. 

The background term is added for data analysis.  

  

For 2D plot, the wave transfer is defined as . 

  
Parameter name Units Default value 

scale cm
-1

 100 

B Å
-1

 0.005 

q0 Å
-1

 0.05 

background cm
-1

 1.0 

  

  

  

3.13.                  LineModel 

  
This is a linear function that calculates: 

  

 
  

  
where A and B are the coefficients of the first and second order terms. 

  



Note: For 2D plot, I(q) = I(qx)*I(qy)  which is defined differently from other shape 

independent models. 

  

Parameter name Units Default value 

A cm
-1

 1.0 

B Å 1.0 

  

  

  

4.    Customized Models  
  
These model functions can be redefined by users (See SansView tutorial for details).  

  

4.1.                     A+Bcos(2x)+Csin(2x) 

  
This function, as a sample function, calculates the intensity = A + Bcos(2q) + Csin(2q). 

  

  

4.2.                     sin(poly)/poly  
  
This function calculates the intensity =  scale * sin(f)/f, where f = A + Bq + Cq

2
 + Dq

3 
+ Eq

4
 + 

Fq
5
. 

  

  

  

5.    Structure Factors 

  

The information in this section is originated from NIST SANS IgorPro package. 

  

  

5.1.                     HardSphere Structure  
  

This calculates the interparticle structure factor for monodisperse spherical particles interacting 

through hard sphere (excluded volume) interactions. The calculation uses the Percus-Yevick 

closure where the interparticle potential is:  

  

  

 
  



  
where r is the distance from the center of the sphere of a radius R. 

  

For 2D plot, the wave transfer is defined as . 
  

  

  

Parameter name Units Default value 

effect_radius Å 50.0 

volfraction   0.2 

      

  

 
  

Figure. 1D plot using the default values (in linear scale). 
  

References:  

Percus, J. K.; Yevick, J. Phys. Rev. 110, 1. (1958). 

  

  

  

5.2.                      SquareWell Structure  
  

This calculates the interparticle structure factor for a squar well fluid spherical particles The 

mean spherical approximation (MSA) closure was used for this calculation, and is not the most 

appropriate closure for an attractive interparticle potential. This solution has been compared to 

Monte Carlo simulations for a square well fluid, showing this calculation to be limited in 

applicability to well depths e < 1.5 kT and volume fractions f < 0.08. 

  



Positive well depths correspond to an attractive potential well. Negative well depths correspond 

to a potential "shoulder", which may or may not be physically reasonable. 

  

The well width (l) is defined as multiples of the particle diameter (2*R) 

  

The interaction potential is: 

  

  

 
  

  

  
where r is the distance from the center of the sphere of a radius R. 

  

For 2D plot, the wave transfer is defined as . 
  

  

Parameter name Units Default value 

effect_radius Å 50.0 

volfraction   0.04 

welldepth kT 1.5 

wellwidth diameters 1.2 

  

 
  

Figure. 1D plot using the default values (in linear scale). 



  

References:  

Sharma, R. V.; Sharma, K. C. Physica, 89A, 213. (1977). 

  

  

5.3.                      HayterMSA Structure  
  

This calculates the Structure factor (the Fourier transform of the pair correlation function g(r)) 

for a system of charged, spheroidal objects in a dielectric medium.  When combined with an 

appropriate form factor (such as sphere, core+shell, ellipsoid etc…), this allows for inclusion of 

the interparticle interference effects due to screened coulomb repulsion between charged 

particles. This routine only works for charged particles.  If the charge is set to zero the routine 

will self destruct.  For non-charged particles use a hard sphere potential. 

  

The salt concentration is used to compute the ionic strength of the solution which in turn is used 

to compute the Debye screening length.  At present there is no provision for entering the ionic 

strength directly nor for use of any multivalent salts.  The counterions are also assumed to be 

monovalent. 

  

For 2D plot, the wave transfer is defined as . 
  

  

Parameter name Units Default value 

effect_radius Å 20.8 

charge   19 

volfraction   0.2 

temperature K 318 

salt conc M 0 

dielectconst   71.1 

  



 
  

Figure. 1D plot using the default values (in linear scale). 
  

References:  

JP Hansen and JB Hayter, Molecular Physics 46, 651-656 (1982). 

            JB Hayter and J Penfold, Molecular Physics 42, 109-118 (1981). 

  

  

  

5.4.                      StickyHS Structure  
  

This calculates the interparticle structure factor for a hard sphere fluid with a narrow attractive 

well. A perturbative solution of the Percus-Yevick closure is used. The strength of the attractive 

well is described in terms of "stickiness" as defined below. The returned value is a dimensionless 

structure factor, S(q). 

  

The perturb (perturbation parameter), epsilon, should be held between 0.01 and 0.1. It is best to 

hold the perturbation parameter fixed and let the "stickiness" vary to adjust the interaction 

strength. The stickiness, tau, is defined in the equation below and is a function of both the 

perturbation parameter and the interaction strength. Tau and epsilon are defined in terms of the 

hard sphere diameter (sigma = 2R), the width of the square well, delta (same units as R), and the 

depth of the well, uo, in units of kT. From the definition, it is clear that smaller tau mean stronger 

attraction. 

  

  

 
  

  



where the interaction potential is 

  

  

 
  

  
The Percus-Yevick (PY) closure was used for this calculation, and is an adequate closure for an 

attractive interparticle potential. This solution has been compared to Monte Carlo simulations for 

a square well fluid, with good agreement. 

  

The true particle volume fraction, f, is not equal to h, which appears in most of the reference. The 

two are related in equation (24) of the reference. The reference also describes the relationship 

between this perturbation solution and the original sticky hard sphere (or adhesive sphere) model 

by Baxter. 

  

NOTES: The calculation can go haywire for certain combinations of the input parameters, 

producing unphysical solutions - in this case errors are reported to the command window and the 

S(q) is set to -1 (it will disappear on a log-log plot). Use tight bounds to keep the parameters to 

values that you know are physical (test them) and keep nudging them until the optimization does 

not hit the constraints. 

  

For 2D plot, the wave transfer is defined as . 
  

  

Parameter name Units Default value 

effect_radius Å 50 

perturb    0.05 

volfraction   0.1 

stickiness K 0.2 

  



 
Figure. 1D plot using the default values (in linear scale). 

  

  

References:  

Menon, S. V. G., Manohar, C. and K. Srinivas Rao J. Chem. Phys., 95(12), 9186-9190 

(1991). 
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