Source code for sas.models.BCCrystalModel

##############################################################################
# This software was developed by the University of Tennessee as part of the
# Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
# project funded by the US National Science Foundation.
#
# If you use DANSE applications to do scientific research that leads to
# publication, we ask that you acknowledge the use of the software with the
# following sentence:
#
# This work benefited from DANSE software developed under NSF award DMR-0520547
#
# Copyright 2008-2011, University of Tennessee
##############################################################################

""" 
Provide functionality for a C extension model

.. WARNING::

   THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
   DO NOT MODIFY THIS FILE, MODIFY
   src/sas/models/include/bcc.h
   AND RE-RUN THE GENERATOR SCRIPT
"""

from sas.models.BaseComponent import BaseComponent
from sas.models.sas_extension.c_models import CBCCrystalModel

[docs]def create_BCCrystalModel(): """ Create a model instance """ obj = BCCrystalModel() # CBCCrystalModel.__init__(obj) is called by # the BCCrystalModel constructor return obj
[docs]class BCCrystalModel(CBCCrystalModel, BaseComponent): """ Class that evaluates a BCCrystalModel model. This file was auto-generated from src/sas/models/include/bcc.h. Refer to that file and the structure it contains for details of the model. List of default parameters: * scale = 1.0 * dnn = 220.0 [A] * d_factor = 0.06 * radius = 40.0 [A] * sldSph = 3e-06 [1/A^(2)] * sldSolv = 6.3e-06 [1/A^(2)] * background = 0.0 [1/cm] * theta = 0.0 [deg] * phi = 0.0 [deg] * psi = 0.0 [deg] """ def __init__(self, multfactor=1): """ Initialization """ self.__dict__ = {} # Initialize BaseComponent first, then sphere BaseComponent.__init__(self) #apply(CBCCrystalModel.__init__, (self,)) CBCCrystalModel.__init__(self) self.is_multifunc = False ## Name of the model self.name = "BCCrystalModel" ## Model description self.description = """ P(q)=(scale/Vp)*V_lattice*P(q)*Z(q)+bkg where scale is the volume fraction of sphere, Vp = volume of the primary particle, V_lattice = volume correction for for the crystal structure, P(q)= form factor of the sphere (normalized), Z(q)= paracrystalline structure factor for a face centered cubic structure. [Body Centered Cubic ParaCrystal Model] Parameters; scale: volume fraction of spheres bkg:background, R: radius of sphere dnn: Nearest neighbor distance d_factor: Paracrystal distortion factor radius: radius of the spheres sldSph: SLD of the sphere sldSolv: SLD of the solvent """ ## Parameter details [units, min, max] self.details = {} self.details['scale'] = ['', None, None] self.details['dnn'] = ['[A]', None, None] self.details['d_factor'] = ['', None, None] self.details['radius'] = ['[A]', None, None] self.details['sldSph'] = ['[1/A^(2)]', None, None] self.details['sldSolv'] = ['[1/A^(2)]', None, None] self.details['background'] = ['[1/cm]', None, None] self.details['theta'] = ['[deg]', None, None] self.details['phi'] = ['[deg]', None, None] self.details['psi'] = ['[deg]', None, None] ## fittable parameters self.fixed = ['radius.width', 'phi.width', 'psi.width', 'theta.width'] ## non-fittable parameters self.non_fittable = [] ## parameters with orientation self.orientation_params = ['phi', 'psi', 'theta', 'phi.width', 'psi.width', 'theta.width'] ## parameters with magnetism self.magnetic_params = [] self.category = None self.multiplicity_info = None def __setstate__(self, state): """ restore the state of a model from pickle """ self.__dict__, self.params, self.dispersion = state def __reduce_ex__(self, proto): """ Overwrite the __reduce_ex__ of PyTypeObject *type call in the init of c model. """ state = (self.__dict__, self.params, self.dispersion) return (create_BCCrystalModel, tuple(), state, None, None)
[docs] def clone(self): """ Return a identical copy of self """ return self._clone(BCCrystalModel())
[docs] def run(self, x=0.0): """ Evaluate the model :param x: input q, or [q,phi] :return: scattering function P(q) """ return CBCCrystalModel.run(self, x)
[docs] def runXY(self, x=0.0): """ Evaluate the model in cartesian coordinates :param x: input q, or [qx, qy] :return: scattering function P(q) """ return CBCCrystalModel.runXY(self, x)
[docs] def evalDistribution(self, x): """ Evaluate the model in cartesian coordinates :param x: input q[], or [qx[], qy[]] :return: scattering function P(q[]) """ return CBCCrystalModel.evalDistribution(self, x)
[docs] def calculate_ER(self): """ Calculate the effective radius for P(q)*S(q) :return: the value of the effective radius """ return CBCCrystalModel.calculate_ER(self)
[docs] def calculate_VR(self): """ Calculate the volf ratio for P(q)*S(q) :return: the value of the volf ratio """ return CBCCrystalModel.calculate_VR(self)
[docs] def set_dispersion(self, parameter, dispersion): """ Set the dispersion object for a model parameter :param parameter: name of the parameter [string] :param dispersion: dispersion object of type DispersionModel """ return CBCCrystalModel.set_dispersion(self, parameter, dispersion.cdisp) # End of file