""" This software was developed by the University of Tennessee as part of the Distributed Data Analysis of Neutron Scattering Experiments (DANSE) project funded by the US National Science Foundation. See the license text in license.txt copyright 2009, University of Tennessee """ import DataLoader.extensions.smearer as smearer import numpy import math import logging, sys from DataLoader.smearing_2d import Smearer2D def smear_selection(data1D): """ Creates the right type of smearer according to the data. The canSAS format has a rule that either slit smearing data OR resolution smearing data is available. For the present purpose, we choose the one that has none-zero data. If both slit and resolution smearing arrays are filled with good data (which should not happen), then we choose the resolution smearing data. @param data1D: Data1D object """ # Sanity check. If we are not dealing with a SANS Data1D # object, just return None if data1D.__class__.__name__ != 'Data1D': if data1D == None: return None elif data1D.dqx_data == None or data1D.dqy_data == None: return None return Smearer2D(data1D) if not hasattr(data1D, "dx") and not hasattr(data1D, "dxl") and not hasattr(data1D, "dxw"): return None # Look for resolution smearing data _found_resolution = False if data1D.dx is not None and len(data1D.dx)==len(data1D.x): # Check that we have non-zero data if data1D.dx[0]>0.0: _found_resolution = True #print "_found_resolution",_found_resolution #print "data1D.dx[0]",data1D.dx[0],data1D.dxl[0] # If we found resolution smearing data, return a QSmearer if _found_resolution == True: return QSmearer(data1D) # Look for slit smearing data _found_slit = False if data1D.dxl is not None and len(data1D.dxl)==len(data1D.x) \ and data1D.dxw is not None and len(data1D.dxw)==len(data1D.x): # Check that we have non-zero data if data1D.dxl[0]>0.0 or data1D.dxw[0]>0.0: _found_slit = True # Sanity check: all data should be the same as a function of Q for item in data1D.dxl: if data1D.dxl[0] != item: _found_resolution = False break for item in data1D.dxw: if data1D.dxw[0] != item: _found_resolution = False break # If we found slit smearing data, return a slit smearer if _found_slit == True: return SlitSmearer(data1D) return None class _BaseSmearer(object): def __init__(self): self.nbins = 0 self._weights = None ## Internal flag to keep track of C++ smearer initialization self._init_complete = False self._smearer = None def __deepcopy__(self, memo={}): """ Return a valid copy of self. Avoid copying the _smearer C object and force a matrix recompute when the copy is used. """ result = _BaseSmearer() result.nbins = self.nbins return result def _compute_matrix(self): return NotImplemented def get_bin_range(self, q_min=None, q_max=None): """ @param q_min: minimum q-value to smear @param q_max: maximum q-value to smear """ # If this is the first time we call for smearing, # initialize the C++ smearer object first if not self._init_complete: self._initialize_smearer() if q_min == None: q_min = self.min if q_max == None: q_max = self.max _qmin_unsmeared, _qmax_unsmeared = self.get_unsmeared_range(q_min, q_max) _first_bin = None _last_bin = None step = (self.max-self.min)/(self.nbins-1.0) try: for i in range(self.nbins): q_i = smearer.get_q(self._smearer, i) if (q_i >= _qmin_unsmeared) and (q_i <= _qmax_unsmeared): # Identify first and last bin if _first_bin is None: _first_bin = i else: _last_bin = i except: raise RuntimeError, "_BaseSmearer.get_bin_range: error getting range\n %s" % sys.exc_value return _first_bin, _last_bin def __call__(self, iq_in, first_bin=0, last_bin=None): """ Perform smearing """ # If this is the first time we call for smearing, # initialize the C++ smearer object first if not self._init_complete: self._initialize_smearer() # Get the max value for the last bin if last_bin is None or last_bin>=len(iq_in): last_bin = len(iq_in)-1 # Check that the first bin is positive if first_bin<0: first_bin = 0 # Sanity check if len(iq_in) != self.nbins: raise RuntimeError, "Invalid I(q) vector: inconsistent array length %d != %s" % (len(iq_in), str(self.nbins)) # Storage for smeared I(q) iq_out = numpy.zeros(self.nbins) smear_output = smearer.smear(self._smearer, iq_in, iq_out, first_bin, last_bin) if smear_output < 0: raise RuntimeError, "_BaseSmearer: could not smear, code = %g" % smear_output return iq_out class _SlitSmearer(_BaseSmearer): """ Slit smearing for I(q) array """ def __init__(self, nbins=None, width=None, height=None, min=None, max=None): """ Initialization @param iq: I(q) array [cm-1] @param width: slit width [A-1] @param height: slit height [A-1] @param min: Q_min [A-1] @param max: Q_max [A-1] """ _BaseSmearer.__init__(self) ## Slit width in Q units self.width = width ## Slit height in Q units self.height = height ## Q_min (Min Q-value for I(q)) self.min = min ## Q_max (Max Q_value for I(q)) self.max = max ## Number of Q bins self.nbins = nbins ## Number of points used in the smearing computation self.npts = 1000 ## Smearing matrix self._weights = None self.qvalues = None def _initialize_smearer(self): """ Initialize the C++ smearer object. This method HAS to be called before smearing """ #self._smearer = smearer.new_slit_smearer(self.width, self.height, self.min, self.max, self.nbins) self._smearer = smearer.new_slit_smearer_with_q(self.width, self.height, self.qvalues) self._init_complete = True def get_unsmeared_range(self, q_min, q_max): """ Determine the range needed in unsmeared-Q to cover the smeared Q range """ # Range used for input to smearing _qmin_unsmeared = q_min _qmax_unsmeared = q_max try: _qmin_unsmeared = self.min _qmax_unsmeared = self.max except: logging.error("_SlitSmearer.get_bin_range: %s" % sys.exc_value) return _qmin_unsmeared, _qmax_unsmeared class SlitSmearer(_SlitSmearer): """ Adaptor for slit smearing class and SANS data """ def __init__(self, data1D): """ Assumption: equally spaced bins of increasing q-values. @param data1D: data used to set the smearing parameters """ # Initialization from parent class super(SlitSmearer, self).__init__() ## Slit width self.width = 0 if data1D.dxw is not None and len(data1D.dxw)==len(data1D.x): self.width = data1D.dxw[0] # Sanity check for value in data1D.dxw: if value != self.width: raise RuntimeError, "Slit smearing parameters must be the same for all data" ## Slit height self.height = 0 if data1D.dxl is not None and len(data1D.dxl)==len(data1D.x): self.height = data1D.dxl[0] # Sanity check for value in data1D.dxl: if value != self.height: raise RuntimeError, "Slit smearing parameters must be the same for all data" ## Number of Q bins self.nbins = len(data1D.x) ## Minimum Q self.min = min(data1D.x) ## Maximum self.max = max(data1D.x) ## Q-values self.qvalues = data1D.x class _QSmearer(_BaseSmearer): """ Perform Gaussian Q smearing """ def __init__(self, nbins=None, width=None, min=None, max=None): """ Initialization @param nbins: number of Q bins @param width: array standard deviation in Q [A-1] @param min: Q_min [A-1] @param max: Q_max [A-1] """ _BaseSmearer.__init__(self) ## Standard deviation in Q [A-1] self.width = width ## Q_min (Min Q-value for I(q)) self.min = min ## Q_max (Max Q_value for I(q)) self.max = max ## Number of Q bins self.nbins = nbins ## Smearing matrix self._weights = None self.qvalues = None def _initialize_smearer(self): """ Initialize the C++ smearer object. This method HAS to be called before smearing """ #self._smearer = smearer.new_q_smearer(numpy.asarray(self.width), self.min, self.max, self.nbins) self._smearer = smearer.new_q_smearer_with_q(numpy.asarray(self.width), self.qvalues) self._init_complete = True def get_unsmeared_range(self, q_min, q_max): """ Determine the range needed in unsmeared-Q to cover the smeared Q range Take 3 sigmas as the offset between smeared and unsmeared space """ # Range used for input to smearing _qmin_unsmeared = q_min _qmax_unsmeared = q_max try: offset = 3.0*max(self.width) _qmin_unsmeared = max([self.min, q_min-offset]) _qmax_unsmeared = min([self.max, q_max+offset]) except: logging.error("_QSmearer.get_bin_range: %s" % sys.exc_value) return _qmin_unsmeared, _qmax_unsmeared class QSmearer(_QSmearer): """ Adaptor for Gaussian Q smearing class and SANS data """ def __init__(self, data1D): """ Assumption: equally spaced bins of increasing q-values. @param data1D: data used to set the smearing parameters """ # Initialization from parent class super(QSmearer, self).__init__() ## Resolution self.width = numpy.zeros(len(data1D.x)) if data1D.dx is not None and len(data1D.dx)==len(data1D.x): self.width = data1D.dx ## Number of Q bins self.nbins = len(data1D.x) ## Minimum Q self.min = min(data1D.x) ## Maximum self.max = max(data1D.x) ## Q-values self.qvalues = data1D.x if __name__ == '__main__': x = 0.001*numpy.arange(1,11) y = 12.0-numpy.arange(1,11) print x #for i in range(10): print i, 0.001 + i*0.008/9.0 #for i in range(100): print i, int(math.floor( (i/ (100/9.0)) )) s = _SlitSmearer(nbins=10, width=0.0, height=0.005, min=0.001, max=0.010) #s = _QSmearer(nbins=10, width=0.001, min=0.001, max=0.010) s._compute_matrix() sy = s(y) print sy if True: for i in range(10): print x[i],y[i], sy[i] #print q, ' : ', s.weight(q), s._compute_iq(q) #print q, ' : ', s(q), s._compute_iq(q) #s._compute_iq(q)