##################################################################### #This software was developed by the University of Tennessee as part of the #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) #project funded by the US National Science Foundation. #See the license text in license.txt #copyright 2008, University of Tennessee ###################################################################### """ Data manipulations for 2D data sets. Using the meta data information, various types of averaging are performed in Q-space """ #TODO: copy the meta data from the 2D object to the resulting 1D object from data_info import plottable_2D, Data1D import math import numpy def get_q(dx, dy, det_dist, wavelength): """ :param dx: x-distance from beam center [mm] :param dy: y-distance from beam center [mm] :return: q-value at the given position """ # Distance from beam center in the plane of detector plane_dist = math.sqrt(dx*dx + dy*dy) # Half of the scattering angle theta = 0.5*math.atan(plane_dist/det_dist) return (4.0*math.pi/wavelength)*math.sin(theta) def get_q_compo(dx, dy, det_dist, wavelength,compo=None): """ This reduces tiny error at very large q. Implementation of this func is not started yet.<--ToDo """ if dy==0: if dx>=0: angle_xy=0 else: angle_xy=math.pi else: angle_xy=math.atan(dx/dy) if compo=="x": out=get_q(dx, dy, det_dist, wavelength)*cos(angle_xy) elif compo=="y": out=get_q(dx, dy, det_dist, wavelength)*sin(angle_xy) else: out=get_q(dx, dy, det_dist, wavelength) return out def flip_phi(phi): """ Correct phi to within the 0 <= to <= 2pi range :return: phi in >=0 and <=2Pi """ Pi = math.pi if phi < 0: phi_out = phi + 2*Pi elif phi > 2*Pi: phi_out = phi - 2*Pi else: phi_out = phi return phi_out def reader2D_converter(data2d=None): """ convert old 2d format opened by IhorReader or danse_reader to new Data2D format :param data2d: 2d array of Data2D object :return: 1d arrays of Data2D object """ if data2d.data==None or data2d.x_bins==None or data2d.y_bins==None: raise ValueError,"Can't convert this data: data=None..." from DataLoader.data_info import Data2D new_x = numpy.tile(data2d.x_bins, (len(data2d.y_bins),1)) new_y = numpy.tile(data2d.y_bins, (len(data2d.x_bins),1)) new_y = new_y.swapaxes(0,1) new_data = data2d.data.flatten() qx_data = new_x.flatten() qy_data = new_y.flatten() q_data = numpy.sqrt(qx_data*qx_data+qy_data*qy_data) if data2d.err_data == None or numpy.any(data2d.err_data<=0): new_err_data = numpy.sqrt(numpy.abs(new_data)) else: new_err_data = data2d.err_data.flatten() mask = numpy.ones(len(new_data), dtype = bool) output = Data2D() output = data2d output.data = new_data output.err_data = new_err_data output.qx_data = qx_data output.qy_data = qy_data output.q_data = q_data output.mask = mask return output class _Slab(object): """ Compute average I(Q) for a region of interest """ def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0, bin_width=0.001): # Minimum Qx value [A-1] self.x_min = x_min # Maximum Qx value [A-1] self.x_max = x_max # Minimum Qy value [A-1] self.y_min = y_min # Maximum Qy value [A-1] self.y_max = y_max # Bin width (step size) [A-1] self.bin_width = bin_width # If True, I(|Q|) will be return, otherwise, negative q-values are allowed self.fold = False def __call__(self, data2D): return NotImplemented def _avg(self, data2D, maj): """ Compute average I(Q_maj) for a region of interest. The major axis is defined as the axis of Q_maj. The minor axis is the axis that we average over. :param data2D: Data2D object :param maj_min: min value on the major axis :return: Data1D object """ if len(data2D.detector) != 1: raise RuntimeError, "_Slab._avg: invalid number of detectors: %g" % len(data2D.detector) # Get data data = data2D.data[numpy.isfinite(data2D.data)] q_data = data2D.q_data[numpy.isfinite(data2D.data)] err_data = data2D.err_data[numpy.isfinite(data2D.data)] qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] # Build array of Q intervals if maj=='x': if self.fold: x_min = 0 else: x_min = self.x_min nbins = int(math.ceil((self.x_max-x_min)/self.bin_width)) qbins = self.bin_width*numpy.arange(nbins)+ x_min elif maj=='y': if self.fold: y_min = 0 else: y_min = self.y_min nbins = int(math.ceil((self.y_max-y_min)/self.bin_width)) qbins = self.bin_width*numpy.arange(nbins)+ y_min else: raise RuntimeError, "_Slab._avg: unrecognized axis %s" % str(maj) x = numpy.zeros(nbins) y = numpy.zeros(nbins) err_y = numpy.zeros(nbins) y_counts = numpy.zeros(nbins) # Average pixelsize in q space for npts in range(len(data)): # default frac frac_x = 0 frac_y = 0 # get ROI if self.x_min <= qx_data[npts] and self.x_max > qx_data[npts]: frac_x = 1 if self.y_min <= qy_data[npts] and self.y_max > qy_data[npts]: frac_y = 1 frac = frac_x * frac_y if frac == 0: continue # binning: find axis of q if maj=='x': q_value = qx_data[npts] min = x_min if maj=='y': q_value = qy_data[npts] min = y_min if self.fold and q_value<0: q_value = -q_value # bin i_q = int(math.ceil((q_value-min)/self.bin_width)) - 1 # skip outside of max bins if i_q<0 or i_q>=nbins: continue # give it full weight #frac = 1 #TODO: find better definition of x[i_q] based on q_data x[i_q] = min +(i_q+1)*self.bin_width/2.0 y[i_q] += frac * data[npts] if err_data == None or err_data[npts]==0.0: if data[npts] <0: data[npts] = -data[npts] err_y[i_q] += frac * frac * data[npts] else: err_y[i_q] += frac * frac * err_data[npts] * err_data[npts] y_counts[i_q] += frac # Average the sums for n in range(nbins): err_y[n] = math.sqrt(err_y[n]) err_y = err_y/y_counts y = y/y_counts idx = (numpy.isfinite(y)& numpy.isfinite(x)) if not idx.any(): raise ValueError, "Average Error: No points inside ROI to average..." elif len(y[idx])!= nbins: print "resulted",nbins- len(y[idx]),"empty bin(s) due to tight binning..." return Data1D(x=x[idx], y=y[idx], dy=err_y[idx]) class SlabY(_Slab): """ Compute average I(Qy) for a region of interest """ def __call__(self, data2D): """ Compute average I(Qy) for a region of interest :param data2D: Data2D object :return: Data1D object """ return self._avg(data2D, 'y') class SlabX(_Slab): """ Compute average I(Qx) for a region of interest """ def __call__(self, data2D): """ Compute average I(Qx) for a region of interest :param data2D: Data2D object :return: Data1D object """ return self._avg(data2D, 'x') class Boxsum(object): """ Perform the sum of counts in a 2D region of interest. """ def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): # Minimum Qx value [A-1] self.x_min = x_min # Maximum Qx value [A-1] self.x_max = x_max # Minimum Qy value [A-1] self.y_min = y_min # Maximum Qy value [A-1] self.y_max = y_max def __call__(self, data2D): """ Perform the sum in the region of interest :param data2D: Data2D object :return: number of counts, error on number of counts """ y, err_y, y_counts = self._sum(data2D) # Average the sums counts = 0 if y_counts==0 else y error = 0 if y_counts==0 else math.sqrt(err_y) return counts, error def _sum(self, data2D): """ Perform the sum in the region of interest :param data2D: Data2D object :return: number of counts, error on number of counts, number of entries summed """ if len(data2D.detector) != 1: raise RuntimeError, "Circular averaging: invalid number of detectors: %g" % len(data2D.detector) # Get data data = data2D.data[numpy.isfinite(data2D.data)] q_data = data2D.q_data[numpy.isfinite(data2D.data)] err_data = data2D.err_data[numpy.isfinite(data2D.data)] qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] y = 0.0 err_y = 0.0 y_counts = 0.0 # Average pixelsize in q space for npts in range(len(data)): # default frac frac_x = 0 frac_y = 0 # get min and max at each points qx = qx_data[npts] qy = qy_data[npts] # get the ROI if self.x_min <= qx and self.x_max > qx: frac_x = 1 if self.y_min <= qy and self.y_max > qy: frac_y = 1 #Find the fraction along each directions frac = frac_x * frac_y if frac == 0: continue y += frac * data[npts] if err_data == None or err_data[npts]==0.0: if data[npts] <0: data[npts] = -data[npts] err_y += frac * frac * data[npts] else: err_y += frac * frac * err_data[npts] * err_data[npts] y_counts += frac return y, err_y, y_counts class Boxavg(Boxsum): """ Perform the average of counts in a 2D region of interest. """ def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): super(Boxavg, self).__init__(x_min=x_min, x_max=x_max, y_min=y_min, y_max=y_max) def __call__(self, data2D): """ Perform the sum in the region of interest :param data2D: Data2D object :return: average counts, error on average counts """ y, err_y, y_counts = self._sum(data2D) # Average the sums counts = 0 if y_counts==0 else y/y_counts error = 0 if y_counts==0 else math.sqrt(err_y)/y_counts return counts, error def get_pixel_fraction_square(x, xmin, xmax): """ Return the fraction of the length from xmin to x.:: A B +-----------+---------+ xmin x xmax :param x: x-value :param xmin: minimum x for the length considered :param xmax: minimum x for the length considered :return: (x-xmin)/(xmax-xmin) when xmin < x < xmax """ if x<=xmin: return 0.0 if x>xmin and x= self.r_max: raise ValueError, "Limit Error: min > max ???" if self.r_min <= q_value and q_value <= self.r_max: frac = 1 if frac == 0: continue i_q = int(math.floor((q_value-self.r_min)/self.bin_width)) # Take care of the edge case at phi = 2pi. if i_q == nbins: i_q = nbins -1 y[i_q] += frac * data_n if err_data == None or err_data[npt]==0.0: if data_n <0: data_n = -data_n err_y[i_q] += frac * frac * data_n else: err_y[i_q] += frac * frac * err_data[npt] * err_data[npt] y_counts[i_q] += frac ## x should be the center value of each bins x = qbins+self.bin_width/2 # Average the sums for n in range(nbins): if err_y[n] <0: err_y[n] = -err_y[n] err_y[n] = math.sqrt(err_y[n]) err_y = err_y/y_counts y = y/y_counts idx = (numpy.isfinite(y))&(numpy.isfinite(x)) if not idx.any(): raise ValueError, "Average Error: No points inside ROI to average..." elif len(y[idx])!= nbins: print "resulted",nbins- len(y[idx]),"empty bin(s) due to tight binning..." return Data1D(x=x[idx], y=y[idx], dy=err_y[idx]) class Ring(object): """ Defines a ring on a 2D data set. The ring is defined by r_min, r_max, and the position of the center of the ring. The data returned is the distribution of counts around the ring as a function of phi. Phi_min and phi_max should be defined between 0 and 2*pi in anti-clockwise starting from the x- axis on the left-hand side """ #Todo: remove center. def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0,nbins=20 ): # Minimum radius self.r_min = r_min # Maximum radius self.r_max = r_max # Center of the ring in x self.center_x = center_x # Center of the ring in y self.center_y = center_y # Number of angular bins self.nbins_phi = nbins def __call__(self, data2D): """ Apply the ring to the data set. Returns the angular distribution for a given q range :param data2D: Data2D object :return: Data1D object """ if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: raise RuntimeError, "Ring averaging only take plottable_2D objects" Pi = math.pi # Get data data = data2D.data[numpy.isfinite(data2D.data)] q_data = data2D.q_data[numpy.isfinite(data2D.data)] err_data = data2D.err_data[numpy.isfinite(data2D.data)] qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] q_data_max = numpy.max(q_data) # Set space for 1d outputs phi_bins = numpy.zeros(self.nbins_phi) phi_counts = numpy.zeros(self.nbins_phi) phi_values = numpy.zeros(self.nbins_phi) phi_err = numpy.zeros(self.nbins_phi) for npt in range(len(data)): frac = 0 # q-value at the point (npt) q_value = q_data[npt] data_n = data[npt] # phi-value at the point (npt) phi_value=math.atan2(qy_data[npt],qx_data[npt])+Pi if self.r_min <= q_value and q_value <= self.r_max: frac = 1 if frac == 0: continue # binning i_phi = int(math.floor((self.nbins_phi)*phi_value/(2*Pi))) # Take care of the edge case at phi = 2pi. if i_phi == self.nbins_phi: i_phi = self.nbins_phi -1 phi_bins[i_phi] += frac * data[npt] if err_data == None or err_data[npt] ==0.0: if data_n <0: data_n = -data_n phi_err[i_phi] += frac * frac * math.fabs(data_n) else: phi_err[i_phi] += frac * frac *err_data[npt]*err_data[npt] phi_counts[i_phi] += frac for i in range(self.nbins_phi): phi_bins[i] = phi_bins[i] / phi_counts[i] phi_err[i] = math.sqrt(phi_err[i]) / phi_counts[i] phi_values[i] = 2.0*math.pi/self.nbins_phi*(1.0*i + 0.5) idx = (numpy.isfinite(phi_bins)) if not idx.any(): raise ValueError, "Average Error: No points inside ROI to average..." elif len(phi_bins[idx])!= self.nbins_phi: print "resulted",self.nbins_phi- len(phi_bins[idx]),"empty bin(s) due to tight binning..." return Data1D(x=phi_values[idx], y=phi_bins[idx], dy=phi_err[idx]) def get_pixel_fraction(qmax, q_00, q_01, q_10, q_11): """ Returns the fraction of the pixel defined by the four corners (q_00, q_01, q_10, q_11) that has q < qmax.:: q_01 q_11 y=1 +--------------+ | | | | | | y=0 +--------------+ q_00 q_10 x=0 x=1 """ # y side for x = minx x_0 = get_intercept(qmax, q_00, q_01) # y side for x = maxx x_1 = get_intercept(qmax, q_10, q_11) # x side for y = miny y_0 = get_intercept(qmax, q_00, q_10) # x side for y = maxy y_1 = get_intercept(qmax, q_01, q_11) # surface fraction for a 1x1 pixel frac_max = 0 if x_0 and x_1: frac_max = (x_0+x_1)/2.0 elif y_0 and y_1: frac_max = (y_0+y_1)/2.0 elif x_0 and y_0: if q_00 < q_10: frac_max = x_0*y_0/2.0 else: frac_max = 1.0-x_0*y_0/2.0 elif x_0 and y_1: if q_00 < q_10: frac_max = x_0*y_1/2.0 else: frac_max = 1.0-x_0*y_1/2.0 elif x_1 and y_0: if q_00 > q_10: frac_max = x_1*y_0/2.0 else: frac_max = 1.0-x_1*y_0/2.0 elif x_1 and y_1: if q_00 < q_10: frac_max = 1.0 - (1.0-x_1)*(1.0-y_1)/2.0 else: frac_max = (1.0-x_1)*(1.0-y_1)/2.0 # If we make it here, there is no intercept between # this pixel and the constant-q ring. We only need # to know if we have to include it or exclude it. elif (q_00+q_01+q_10+q_11)/4.0 < qmax: frac_max = 1.0 return frac_max def get_intercept(q, q_0, q_1): """ Returns the fraction of the side at which the q-value intercept the pixel, None otherwise. The values returned is the fraction ON THE SIDE OF THE LOWEST Q. :: A B +-----------+--------+ <--- pixel size 0 1 Q_0 -------- Q ----- Q_1 <--- equivalent Q range if Q_1 > Q_0, A is returned if Q_1 < Q_0, B is returned if Q is outside the range of [Q_0, Q_1], None is returned """ if q_1 > q_0: if (q > q_0 and q <= q_1): return (q-q_0)/(q_1 - q_0) else: if (q > q_1 and q <= q_0): return (q-q_1)/(q_0 - q_1) return None class _Sector: """ Defines a sector region on a 2D data set. The sector is defined by r_min, r_max, phi_min, phi_max, and the position of the center of the ring where phi_min and phi_max are defined by the right and left lines wrt central line and phi_max could be less than phi_min. Phi is defined between 0 and 2*pi in anti-clockwise starting from the x- axis on the left-hand side """ def __init__(self, r_min, r_max, phi_min=0, phi_max=2*math.pi,nbins=20): self.r_min = r_min self.r_max = r_max self.phi_min = phi_min self.phi_max = phi_max self.nbins = nbins def _agv(self, data2D, run='phi'): """ Perform sector averaging. :param data2D: Data2D object :param run: define the varying parameter ('phi' , 'q' , or 'q2') :return: Data1D object """ if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: raise RuntimeError, "Ring averaging only take plottable_2D objects" Pi = math.pi # Get the all data & info data = data2D.data[numpy.isfinite(data2D.data)] q_data = data2D.q_data[numpy.isfinite(data2D.data)] err_data = data2D.err_data[numpy.isfinite(data2D.data)] qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] #set space for 1d outputs x = numpy.zeros(self.nbins) y = numpy.zeros(self.nbins) y_err = numpy.zeros(self.nbins) y_counts = numpy.zeros(self.nbins) # Get the min and max into the region: 0 <= phi < 2Pi phi_min = flip_phi(self.phi_min) phi_max = flip_phi(self.phi_max) q_data_max = numpy.max(q_data) for n in range(len(data)): frac = 0 # q-value at the pixel (j,i) q_value = q_data[n] data_n = data[n] # Is pixel within range? is_in = False # phi-value of the pixel (j,i) phi_value=math.atan2(qy_data[n],qx_data[n])+Pi ## No need to calculate the frac when all data are within range if self.r_min <= q_value and q_value <= self.r_max: frac = 1 if frac == 0: continue #In case of two ROIs (symmetric major and minor regions)(for 'q2') if run.lower()=='q2': ## For minor sector wing # Calculate the minor wing phis phi_min_minor = flip_phi(phi_min-Pi) phi_max_minor = flip_phi(phi_max-Pi) # Check if phis of the minor ring is within 0 to 2pi if phi_min_minor > phi_max_minor: is_in = (phi_value > phi_min_minor or phi_value < phi_max_minor) else: is_in = (phi_value > phi_min_minor and phi_value < phi_max_minor) #For all cases(i.e.,for 'q', 'q2', and 'phi') #Find pixels within ROI if phi_min > phi_max: is_in = is_in or (phi_value > phi_min or phi_value < phi_max) else: is_in = is_in or (phi_value>= phi_min and phi_value 0. The number of bin in Q also has to be defined. """ def __call__(self, data2D): """ Perform sector average and return I(Q). :param data2D: Data2D object :return: Data1D object """ return self._agv(data2D, 'q2') class Ringcut(object): """ Defines a ring on a 2D data set. The ring is defined by r_min, r_max, and the position of the center of the ring. The data returned is the region inside the ring Phi_min and phi_max should be defined between 0 and 2*pi in anti-clockwise starting from the x- axis on the left-hand side """ def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0 ): # Minimum radius self.r_min = r_min # Maximum radius self.r_max = r_max # Center of the ring in x self.center_x = center_x # Center of the ring in y self.center_y = center_y def __call__(self, data2D): """ Apply the ring to the data set. Returns the angular distribution for a given q range :param data2D: Data2D object :return: index array in the range """ if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: raise RuntimeError, "Ring cut only take plottable_2D objects" # Get data qx_data = data2D.qx_data qy_data = data2D.qy_data mask = data2D.mask q_data = numpy.sqrt(qx_data*qx_data+qy_data*qy_data) #q_data_max = numpy.max(q_data) # check whether or not the data point is inside ROI out = (self.r_min <= q_data) & (self.r_max >= q_data) return (out) class Boxcut(object): """ Find a rectangular 2D region of interest. """ def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): # Minimum Qx value [A-1] self.x_min = x_min # Maximum Qx value [A-1] self.x_max = x_max # Minimum Qy value [A-1] self.y_min = y_min # Maximum Qy value [A-1] self.y_max = y_max def __call__(self, data2D): """ Find a rectangular 2D region of interest. :param data2D: Data2D object :return: mask, 1d array (len = len(data)) with Trues where the data points are inside ROI, otherwise False """ mask = self._find(data2D) return mask def _find(self, data2D): """ Find a rectangular 2D region of interest. :param data2D: Data2D object :return: out, 1d array (length = len(data)) with Trues where the data points are inside ROI, otherwise Falses """ if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: raise RuntimeError, "Boxcut take only plottable_2D objects" # Get qx_ and qy_data qx_data = data2D.qx_data qy_data = data2D.qy_data mask = data2D.mask # check whether or not the data point is inside ROI outx = (self.x_min <= qx_data) & (self.x_max > qx_data) outy = (self.y_min <= qy_data) & (self.y_max > qy_data) return (outx & outy) class Sectorcut(object): """ Defines a sector (major + minor) region on a 2D data set. The sector is defined by phi_min, phi_max, where phi_min and phi_max are defined by the right and left lines wrt central line. Phi_min and phi_max are given in units of radian and (phi_max-phi_min) should not be larger than pi """ def __init__(self,phi_min=0, phi_max=math.pi): self.phi_min = phi_min self.phi_max = phi_max def __call__(self, data2D): """ Find a rectangular 2D region of interest. :param data2D: Data2D object :return: mask, 1d array (len = len(data)) with Trues where the data points are inside ROI, otherwise False """ mask = self._find(data2D) return mask def _find(self, data2D): """ Find a rectangular 2D region of interest. :param data2D: Data2D object :return: out, 1d array (length = len(data)) with Trues where the data points are inside ROI, otherwise Falses """ if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: raise RuntimeError, "Sectorcut take only plottable_2D objects" Pi = math.pi # Get data qx_data = data2D.qx_data qy_data = data2D.qy_data phi_data = numpy.zeros(len(qx_data)) # get phi from data phi_data = numpy.arctan2(qy_data, qx_data) # Get the min and max into the region: -pi <= phi < Pi phi_min_major = flip_phi(self.phi_min+Pi)-Pi phi_max_major = flip_phi(self.phi_max+Pi)-Pi # check for major sector if phi_min_major > phi_max_major: out_major = (phi_min_major <= phi_data) + (phi_max_major > phi_data) else: out_major = (phi_min_major <= phi_data) & (phi_max_major > phi_data) # minor sector # Get the min and max into the region: -pi <= phi < Pi phi_min_minor = flip_phi(self.phi_min)-Pi phi_max_minor = flip_phi(self.phi_max)-Pi # check for minor sector if phi_min_minor > phi_max_minor: out_minor= (phi_min_minor <= phi_data) + (phi_max_minor>= phi_data) else: out_minor = (phi_min_minor <= phi_data) & (phi_max_minor >= phi_data) out = out_major + out_minor return out if __name__ == "__main__": from loader import Loader d = Loader().load('test/MAR07232_rest.ASC') #d = Loader().load('test/MP_New.sans') r = SectorQ(r_min=.000001, r_max=.01, phi_min=0.0, phi_max=2*math.pi) o = r(d) s = Ring(r_min=.000001, r_max=.01) p = s(d) for i in range(len(o.x)): print o.x[i], o.y[i], o.dy[i]