source: sasmodels/sasmodels/resolution.py @ 5925e90

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 5925e90 was 5925e90, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

fix mistranslated log normal distribution; update docs

  • Property mode set to 100644
File size: 38.6 KB
Line 
1"""
2Define the resolution functions for the data.
3
4This defines classes for 1D and 2D resolution calculations.
5"""
6from __future__ import division
7
8from scipy.special import erf
9from numpy import sqrt, log, log10
10import numpy as np
11
12__all__ = ["Resolution", "Perfect1D", "Pinhole1D", "Slit1D",
13           "apply_resolution_matrix", "pinhole_resolution", "slit_resolution",
14           "pinhole_extend_q", "slit_extend_q", "bin_edges",
15           "interpolate", "linear_extrapolation", "geometric_extrapolation",
16          ]
17
18MINIMUM_RESOLUTION = 1e-8
19
20
21# When extrapolating to -q, what is the minimum positive q relative to q_min
22# that we wish to calculate?
23MIN_Q_SCALE_FOR_NEGATIVE_Q_EXTRAPOLATION = 0.01
24
25class Resolution(object):
26    """
27    Abstract base class defining a 1D resolution function.
28
29    *q* is the set of q values at which the data is measured.
30
31    *q_calc* is the set of q values at which the theory needs to be evaluated.
32    This may extend and interpolate the q values.
33
34    *apply* is the method to call with I(q_calc) to compute the resolution
35    smeared theory I(q).
36    """
37    q = None
38    q_calc = None
39    def apply(self, theory):
40        """
41        Smear *theory* by the resolution function, returning *Iq*.
42        """
43        raise NotImplementedError("Subclass does not define the apply function")
44
45
46class Perfect1D(Resolution):
47    """
48    Resolution function to use when there is no actual resolution smearing
49    to be applied.  It has the same interface as the other resolution
50    functions, but returns the identity function.
51    """
52    def __init__(self, q):
53        self.q_calc = self.q = q
54
55    def apply(self, theory):
56        return theory
57
58
59class Pinhole1D(Resolution):
60    r"""
61    Pinhole aperture with q-dependent gaussian resolution.
62
63    *q* points at which the data is measured.
64
65    *q_width* gaussian 1-sigma resolution at each data point.
66
67    *q_calc* is the list of points to calculate, or None if this should
68    be estimated from the *q* and *q_width*.
69    """
70    def __init__(self, q, q_width, q_calc=None, nsigma=3):
71        #*min_step* is the minimum point spacing to use when computing the
72        #underlying model.  It should be on the order of
73        #$\tfrac{1}{10}\tfrac{2\pi}{d_\text{max}}$ to make sure that fringes
74        #are computed with sufficient density to avoid aliasing effects.
75
76        # Protect against calls with q_width=0.  The extend_q function will
77        # not extend the q if q_width is 0, but q_width must be non-zero when
78        # constructing the weight matrix to avoid division by zero errors.
79        # In practice this should never be needed, since resolution should
80        # default to Perfect1D if the pinhole geometry is not defined.
81        self.q, self.q_width = q, q_width
82        self.q_calc = (pinhole_extend_q(q, q_width, nsigma=nsigma)
83                       if q_calc is None else np.sort(q_calc))
84        self.weight_matrix = pinhole_resolution(
85            self.q_calc, self.q, np.maximum(q_width, MINIMUM_RESOLUTION))
86
87    def apply(self, theory):
88        return apply_resolution_matrix(self.weight_matrix, theory)
89
90
91class Slit1D(Resolution):
92    """
93    Slit aperture with a complicated resolution function.
94
95    *q* points at which the data is measured.
96
97    *qx_width* slit width
98
99    *qy_height* slit height
100
101    *q_calc* is the list of points to calculate, or None if this should
102    be estimated from the *q* and *q_width*.
103
104    The *weight_matrix* is computed by :func:`slit1d_resolution`
105    """
106    def __init__(self, q, width, height=0., q_calc=None):
107        # Remember what width/height was used even though we won't need them
108        # after the weight matrix is constructed
109        self.width, self.height = width, height
110
111        # Allow independent resolution on each point even though it is not
112        # needed in practice.
113        if np.isscalar(width):
114            width = np.ones(len(q))*width
115        else:
116            width = np.asarray(width)
117        if np.isscalar(height):
118            height = np.ones(len(q))*height
119        else:
120            height = np.asarray(height)
121
122        self.q = q.flatten()
123        self.q_calc = slit_extend_q(q, width, height) \
124            if q_calc is None else np.sort(q_calc)
125        self.weight_matrix = \
126            slit_resolution(self.q_calc, self.q, width, height)
127
128    def apply(self, theory):
129        return apply_resolution_matrix(self.weight_matrix, theory)
130
131
132def apply_resolution_matrix(weight_matrix, theory):
133    """
134    Apply the resolution weight matrix to the computed theory function.
135    """
136    #print("apply shapes", theory.shape, weight_matrix.shape)
137    Iq = np.dot(theory[None, :], weight_matrix)
138    #print("result shape",Iq.shape)
139    return Iq.flatten()
140
141
142def pinhole_resolution(q_calc, q, q_width):
143    """
144    Compute the convolution matrix *W* for pinhole resolution 1-D data.
145
146    Each row *W[i]* determines the normalized weight that the corresponding
147    points *q_calc* contribute to the resolution smeared point *q[i]*.  Given
148    *W*, the resolution smearing can be computed using *dot(W,q)*.
149
150    *q_calc* must be increasing.  *q_width* must be greater than zero.
151    """
152    # The current algorithm is a midpoint rectangle rule.  In the test case,
153    # neither trapezoid nor Simpson's rule improved the accuracy.
154    edges = bin_edges(q_calc)
155    edges[edges < 0.0] = 0.0 # clip edges below zero
156    G = erf((edges[:, None] - q[None, :]) / (sqrt(2.0)*q_width)[None, :])
157    weights = G[1:] - G[:-1]
158    weights /= np.sum(weights, axis=0)[None, :]
159    return weights
160
161
162def slit_resolution(q_calc, q, width, height, n_height=30):
163    r"""
164    Build a weight matrix to compute *I_s(q)* from *I(q_calc)*, given
165    $q_\perp$ = *width* and $q_\parallel$ = *height*.  *n_height* is
166    is the number of steps to use in the integration over $q_\parallel$
167    when both $q_\perp$ and $q_\parallel$ are non-zero.
168
169    Each $q$ can have an independent width and height value even though
170    current instruments use the same slit setting for all measured points.
171
172    If slit height is large relative to width, use:
173
174    .. math::
175
176        I_s(q_i) = \frac{1}{\Delta q_\perp}
177            \int_0^{\Delta q_\perp}
178                I\left(\sqrt{q_i^2 + q_\perp^2}\right) \,dq_\perp
179
180    If slit width is large relative to height, use:
181
182    .. math::
183
184        I_s(q_i) = \frac{1}{2 \Delta q_\parallel}
185            \int_{-\Delta q_\parallel}^{\Delta q_\parallel}
186                I\left(|q_i + q_\parallel|\right) \,dq_\parallel
187
188    For a mixture of slit width and height use:
189
190    .. math::
191
192        I_s(q_i) = \frac{1}{2 \Delta q_\parallel \Delta q_\perp}
193            \int_{-\Delta q_\parallel}^{\Delta q_\parallel}
194            \int_0^{\Delta q_\perp}
195                I\left(\sqrt{(q_i + q_\parallel)^2 + q_\perp^2}\right)
196                \,dq_\perp dq_\parallel
197
198
199    **Algorithm**
200
201    We are using the mid-point integration rule to assign weights to each
202    element of a weight matrix $W$ so that
203
204    .. math::
205
206        I_s(q) = W\,I(q_\text{calc})
207
208    If *q_calc* is at the mid-point, we can infer the bin edges from the
209    pairwise averages of *q_calc*, adding the missing edges before
210    *q_calc[0]* and after *q_calc[-1]*.
211
212    For $q_\parallel = 0$, the smeared value can be computed numerically
213    using the $u$ substitution
214
215    .. math::
216
217        u_j = \sqrt{q_j^2 - q^2}
218
219    This gives
220
221    .. math::
222
223        I_s(q) \approx \sum_j I(u_j) \Delta u_j
224
225    where $I(u_j)$ is the value at the mid-point, and $\Delta u_j$ is the
226    difference between consecutive edges which have been first converted
227    to $u$.  Only $u_j \in [0, \Delta q_\perp]$ are used, which corresponds
228    to $q_j \in \left[q, \sqrt{q^2 + \Delta q_\perp}\right]$, so
229
230    .. math::
231
232        W_{ij} = \frac{1}{\Delta q_\perp} \Delta u_j
233               = \frac{1}{\Delta q_\perp} \left(
234                    \sqrt{q_{j+1}^2 - q_i^2} - \sqrt{q_j^2 - q_i^2} \right)
235            \ \text{if}\  q_j \in \left[q_i, \sqrt{q_i^2 + q_\perp^2}\right]
236
237    where $I_s(q_i)$ is the theory function being computed and $q_j$ are the
238    mid-points between the calculated values in *q_calc*.  We tweak the
239    edges of the initial and final intervals so that they lie on integration
240    limits.
241
242    (To be precise, the transformed midpoint $u(q_j)$ is not necessarily the
243    midpoint of the edges $u((q_{j-1}+q_j)/2)$ and $u((q_j + q_{j+1})/2)$,
244    but it is at least in the interval, so the approximation is going to be
245    a little better than the left or right Riemann sum, and should be
246    good enough for our purposes.)
247
248    For $q_\perp = 0$, the $u$ substitution is simpler:
249
250    .. math::
251
252        u_j = \left|q_j - q\right|
253
254    so
255
256    .. math::
257
258        W_{ij} = \frac{1}{2 \Delta q_\parallel} \Delta u_j
259            = \frac{1}{2 \Delta q_\parallel} (q_{j+1} - q_j)
260            \ \text{if}\ q_j \in
261                \left[q-\Delta q_\parallel, q+\Delta q_\parallel\right]
262
263    However, we need to support cases were $u_j < 0$, which means using
264    $2 (q_{j+1} - q_j)$ when $q_j \in \left[0, q_\parallel-q_i\right]$.
265    This is not an issue for $q_i > q_\parallel$.
266
267    For both $q_\perp > 0$ and $q_\parallel > 0$ we perform a 2 dimensional
268    integration with
269
270    .. math::
271
272        u_{jk} = \sqrt{q_j^2 - (q + (k\Delta q_\parallel/L))^2}
273            \ \text{for}\ k = -L \ldots L
274
275    for $L$ = *n_height*.  This gives
276
277    .. math::
278
279        W_{ij} = \frac{1}{2 \Delta q_\perp q_\parallel}
280            \sum_{k=-L}^L \Delta u_{jk}
281                \left(\frac{\Delta q_\parallel}{2 L + 1}\right)
282
283
284    """
285    #np.set_printoptions(precision=6, linewidth=10000)
286
287    # The current algorithm is a midpoint rectangle rule.
288    q_edges = bin_edges(q_calc) # Note: requires q > 0
289    q_edges[q_edges < 0.0] = 0.0 # clip edges below zero
290    weights = np.zeros((len(q), len(q_calc)), 'd')
291
292    #print(q_calc)
293    for i, (qi, w, h) in enumerate(zip(q, width, height)):
294        if w == 0. and h == 0.:
295            # Perfect resolution, so return the theory value directly.
296            # Note: assumes that q is a subset of q_calc.  If qi need not be
297            # in q_calc, then we can do a weighted interpolation by looking
298            # up qi in q_calc, then weighting the result by the relative
299            # distance to the neighbouring points.
300            weights[i, :] = (q_calc == qi)
301        elif h == 0:
302            weights[i, :] = _q_perp_weights(q_edges, qi, w)
303        elif w == 0:
304            in_x = 1.0 * ((q_calc >= qi-h) & (q_calc <= qi+h))
305            abs_x = 1.0*(q_calc < abs(qi - h)) if qi < h else 0.
306            #print(qi - h, qi + h)
307            #print(in_x + abs_x)
308            weights[i, :] = (in_x + abs_x) * np.diff(q_edges) / (2*h)
309        else:
310            L = n_height
311            for k in range(-L, L+1):
312                weights[i, :] += _q_perp_weights(q_edges, qi+k*h/L, w)
313            weights[i, :] /= 2*L + 1
314
315    return weights.T
316
317
318def _q_perp_weights(q_edges, qi, w):
319    # Convert bin edges from q to u
320    u_limit = np.sqrt(qi**2 + w**2)
321    u_edges = q_edges**2 - qi**2
322    u_edges[q_edges < abs(qi)] = 0.
323    u_edges[q_edges > u_limit] = u_limit**2 - qi**2
324    weights = np.diff(np.sqrt(u_edges))/w
325    #print("i, qi",i,qi,qi+width)
326    #print(q_calc)
327    #print(weights)
328    return weights
329
330
331def pinhole_extend_q(q, q_width, nsigma=3):
332    """
333    Given *q* and *q_width*, find a set of sampling points *q_calc* so
334    that each point $I(q)$ has sufficient support from the underlying
335    function.
336    """
337    q_min, q_max = np.min(q - nsigma*q_width), np.max(q + nsigma*q_width)
338    return linear_extrapolation(q, q_min, q_max)
339
340
341def slit_extend_q(q, width, height):
342    """
343    Given *q*, *width* and *height*, find a set of sampling points *q_calc* so
344    that each point I(q) has sufficient support from the underlying
345    function.
346    """
347    q_min, q_max = np.min(q-height), np.max(np.sqrt((q+height)**2 + width**2))
348
349    return geometric_extrapolation(q, q_min, q_max)
350
351
352def bin_edges(x):
353    """
354    Determine bin edges from bin centers, assuming that edges are centered
355    between the bins.
356
357    Note: this uses the arithmetic mean, which may not be appropriate for
358    log-scaled data.
359    """
360    if len(x) < 2 or (np.diff(x) < 0).any():
361        raise ValueError("Expected bins to be an increasing set")
362    edges = np.hstack([
363        x[0]  - 0.5*(x[1]  - x[0]),  # first point minus half first interval
364        0.5*(x[1:] + x[:-1]),        # mid points of all central intervals
365        x[-1] + 0.5*(x[-1] - x[-2]), # last point plus half last interval
366        ])
367    return edges
368
369
370def interpolate(q, max_step):
371    """
372    Returns *q_calc* with points spaced at most max_step apart.
373    """
374    step = np.diff(q)
375    index = step > max_step
376    if np.any(index):
377        inserts = []
378        for q_i, step_i in zip(q[:-1][index], step[index]):
379            n = np.ceil(step_i/max_step)
380            inserts.extend(q_i + np.arange(1, n)*(step_i/n))
381        # Extend a couple of fringes beyond the end of the data
382        inserts.extend(q[-1] + np.arange(1, 8)*max_step)
383        q_calc = np.sort(np.hstack((q, inserts)))
384    else:
385        q_calc = q
386    return q_calc
387
388
389def linear_extrapolation(q, q_min, q_max):
390    """
391    Extrapolate *q* out to [*q_min*, *q_max*] using the step size in *q* as
392    a guide.  Extrapolation below uses about the same size as the first
393    interval.  Extrapolation above uses about the same size as the final
394    interval.
395
396    if *q_min* is zero or less then *q[0]/10* is used instead.
397    """
398    q = np.sort(q)
399    if q_min < q[0]:
400        if q_min <= 0: q_min = q_min*MIN_Q_SCALE_FOR_NEGATIVE_Q_EXTRAPOLATION
401        n_low = np.ceil((q[0]-q_min) / (q[1]-q[0])) if q[1] > q[0] else 15
402        q_low = np.linspace(q_min, q[0], n_low+1)[:-1]
403    else:
404        q_low = []
405    if q_max > q[-1]:
406        n_high = np.ceil((q_max-q[-1]) / (q[-1]-q[-2])) if q[-1] > q[-2] else 15
407        q_high = np.linspace(q[-1], q_max, n_high+1)[1:]
408    else:
409        q_high = []
410    return np.concatenate([q_low, q, q_high])
411
412
413def geometric_extrapolation(q, q_min, q_max, points_per_decade=None):
414    r"""
415    Extrapolate *q* to [*q_min*, *q_max*] using geometric steps, with the
416    average geometric step size in *q* as the step size.
417
418    if *q_min* is zero or less then *q[0]/10* is used instead.
419
420    *points_per_decade* sets the ratio between consecutive steps such
421    that there will be $n$ points used for every factor of 10 increase
422    in *q*.
423
424    If *points_per_decade* is not given, it will be estimated as follows.
425    Starting at $q_1$ and stepping geometrically by $\Delta q$ to $q_n$
426    in $n$ points gives a geometric average of:
427
428    .. math::
429
430         \log \Delta q = (\log q_n - log q_1) / (n - 1)
431
432    From this we can compute the number of steps required to extend $q$
433    from $q_n$ to $q_\text{max}$ by $\Delta q$ as:
434
435    .. math::
436
437         n_\text{extend} = (\log q_\text{max} - \log q_n) / \log \Delta q
438
439    Substituting:
440
441    .. math::
442
443        n_\text{extend} = (n-1) (\log q_\text{max} - \log q_n)
444            / (\log q_n - log q_1)
445    """
446    q = np.sort(q)
447    if points_per_decade is None:
448        log_delta_q = (len(q) - 1) / (log(q[-1]) - log(q[0]))
449    else:
450        log_delta_q = log(10.) / points_per_decade
451    if q_min < q[0]:
452        if q_min < 0: q_min = q[0]*MIN_Q_SCALE_FOR_NEGATIVE_Q_EXTRAPOLATION
453        n_low = log_delta_q * (log(q[0])-log(q_min))
454        q_low = np.logspace(log10(q_min), log10(q[0]), np.ceil(n_low)+1)[:-1]
455    else:
456        q_low = []
457    if q_max > q[-1]:
458        n_high = log_delta_q * (log(q_max)-log(q[-1]))
459        q_high = np.logspace(log10(q[-1]), log10(q_max), np.ceil(n_high)+1)[1:]
460    else:
461        q_high = []
462    return np.concatenate([q_low, q, q_high])
463
464
465############################################################################
466# unit tests
467############################################################################
468import unittest
469
470
471def eval_form(q, form, pars):
472    """
473    Return the SAS model evaluated at *q*.
474
475    *form* is the SAS model returned from :fun:`core.load_model`.
476
477    *pars* are the parameter values to use when evaluating.
478    """
479    from sasmodels import core
480    kernel = core.make_kernel(form, [q])
481    theory = core.call_kernel(kernel, pars)
482    kernel.release()
483    return theory
484
485
486def gaussian(q, q0, dq):
487    """
488    Return the Gaussian resolution function.
489
490    *q0* is the center, *dq* is the width and *q* are the points to evaluate.
491    """
492    from numpy import exp, pi
493    return exp(-0.5*((q-q0)/dq)**2)/(sqrt(2*pi)*dq)
494
495
496def romberg_slit_1d(q, width, height, form, pars):
497    """
498    Romberg integration for slit resolution.
499
500    This is an adaptive integration technique.  It is called with settings
501    that make it slow to evaluate but give it good accuracy.
502    """
503    from scipy.integrate import romberg
504
505    if any(k not in form.info['defaults'] for k in pars.keys()):
506        keys = set(form.info['defaults'].keys())
507        extra = set(pars.keys()) - keys
508        raise ValueError("bad parameters: [%s] not in [%s]"%
509                         (", ".join(sorted(extra)), ", ".join(sorted(keys))))
510
511    if np.isscalar(width):
512        width = [width]*len(q)
513    if np.isscalar(height):
514        height = [height]*len(q)
515    _int_w = lambda w, qi: eval_form(sqrt(qi**2 + w**2), form, pars)
516    _int_h = lambda h, qi: eval_form(abs(qi+h), form, pars)
517    # If both width and height are defined, then it is too slow to use dblquad.
518    # Instead use trapz on a fixed grid, interpolated into the I(Q) for
519    # the extended Q range.
520    #_int_wh = lambda w, h, qi: eval_form(sqrt((qi+h)**2 + w**2), form, pars)
521    q_calc = slit_extend_q(q, np.asarray(width), np.asarray(height))
522    Iq = eval_form(q_calc, form, pars)
523    result = np.empty(len(q))
524    for i, (qi, w, h) in enumerate(zip(q, width, height)):
525        if h == 0.:
526            r = romberg(_int_w, 0, w, args=(qi,),
527                        divmax=100, vec_func=True, tol=0, rtol=1e-8)
528            result[i] = r/w
529        elif w == 0.:
530            r = romberg(_int_h, -h, h, args=(qi,),
531                        divmax=100, vec_func=True, tol=0, rtol=1e-8)
532            result[i] = r/(2*h)
533        else:
534            w_grid = np.linspace(0, w, 21)[None, :]
535            h_grid = np.linspace(-h, h, 23)[:, None]
536            u = sqrt((qi+h_grid)**2 + w_grid**2)
537            Iu = np.interp(u, q_calc, Iq)
538            #print(np.trapz(Iu, w_grid, axis=1))
539            Is = np.trapz(np.trapz(Iu, w_grid, axis=1), h_grid[:, 0])
540            result[i] = Is / (2*h*w)
541            # from scipy.integrate import dblquad
542            # r, err = dblquad(_int_wh, -h, h, lambda h: 0., lambda h: w,
543            #                  args=(qi,))
544            # result[i] = r/(w*2*h)
545
546    # r should be [float, ...], but it is [array([float]), array([float]),...]
547    return result
548
549
550def romberg_pinhole_1d(q, q_width, form, pars, nsigma=5):
551    """
552    Romberg integration for pinhole resolution.
553
554    This is an adaptive integration technique.  It is called with settings
555    that make it slow to evaluate but give it good accuracy.
556    """
557    from scipy.integrate import romberg
558
559    if any(k not in form.info['defaults'] for k in pars.keys()):
560        keys = set(form.info['defaults'].keys())
561        extra = set(pars.keys()) - keys
562        raise ValueError("bad parameters: [%s] not in [%s]"%
563                         (", ".join(sorted(extra)), ", ".join(sorted(keys))))
564
565    _fn = lambda q, q0, dq: eval_form(q, form, pars)*gaussian(q, q0, dq)
566    r = [romberg(_fn, max(qi-nsigma*dqi, 1e-10*q[0]), qi+nsigma*dqi,
567                 args=(qi, dqi), divmax=100, vec_func=True, tol=0, rtol=1e-8)
568         for qi, dqi in zip(q, q_width)]
569    return np.asarray(r).flatten()
570
571
572class ResolutionTest(unittest.TestCase):
573    """
574    Test the resolution calculations.
575    """
576
577    def setUp(self):
578        self.x = 0.001*np.arange(1, 11)
579        self.y = self.Iq(self.x)
580
581    def Iq(self, q):
582        "Linear function for resolution unit test"
583        return 12.0 - 1000.0*q
584
585    def test_perfect(self):
586        """
587        Perfect resolution and no smearing.
588        """
589        resolution = Perfect1D(self.x)
590        theory = self.Iq(resolution.q_calc)
591        output = resolution.apply(theory)
592        np.testing.assert_equal(output, self.y)
593
594    def test_slit_zero(self):
595        """
596        Slit smearing with perfect resolution.
597        """
598        resolution = Slit1D(self.x, width=0, height=0, q_calc=self.x)
599        theory = self.Iq(resolution.q_calc)
600        output = resolution.apply(theory)
601        np.testing.assert_equal(output, self.y)
602
603    @unittest.skip("not yet supported")
604    def test_slit_high(self):
605        """
606        Slit smearing with height 0.005
607        """
608        resolution = Slit1D(self.x, width=0, height=0.005, q_calc=self.x)
609        theory = self.Iq(resolution.q_calc)
610        output = resolution.apply(theory)
611        answer = [
612            9.0618, 8.6402, 8.1187, 7.1392, 6.1528,
613            5.5555, 4.5584, 3.5606, 2.5623, 2.0000,
614            ]
615        np.testing.assert_allclose(output, answer, atol=1e-4)
616
617    @unittest.skip("not yet supported")
618    def test_slit_both_high(self):
619        """
620        Slit smearing with width < 100*height.
621        """
622        q = np.logspace(-4, -1, 10)
623        resolution = Slit1D(q, width=0.2, height=np.inf)
624        theory = 1000*self.Iq(resolution.q_calc**4)
625        output = resolution.apply(theory)
626        answer = [
627            8.85785, 8.43012, 7.92687, 6.94566, 6.03660,
628            5.40363, 4.40655, 3.40880, 2.41058, 2.00000,
629            ]
630        np.testing.assert_allclose(output, answer, atol=1e-4)
631
632    @unittest.skip("not yet supported")
633    def test_slit_wide(self):
634        """
635        Slit smearing with width 0.0002
636        """
637        resolution = Slit1D(self.x, width=0.0002, height=0, q_calc=self.x)
638        theory = self.Iq(resolution.q_calc)
639        output = resolution.apply(theory)
640        answer = [
641            11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0,
642            ]
643        np.testing.assert_allclose(output, answer, atol=1e-4)
644
645    @unittest.skip("not yet supported")
646    def test_slit_both_wide(self):
647        """
648        Slit smearing with width > 100*height.
649        """
650        resolution = Slit1D(self.x, width=0.0002, height=0.000001,
651                            q_calc=self.x)
652        theory = self.Iq(resolution.q_calc)
653        output = resolution.apply(theory)
654        answer = [
655            11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0,
656            ]
657        np.testing.assert_allclose(output, answer, atol=1e-4)
658
659    def test_pinhole_zero(self):
660        """
661        Pinhole smearing with perfect resolution
662        """
663        resolution = Pinhole1D(self.x, 0.0*self.x)
664        theory = self.Iq(resolution.q_calc)
665        output = resolution.apply(theory)
666        np.testing.assert_equal(output, self.y)
667
668    def test_pinhole(self):
669        """
670        Pinhole smearing with dQ = 0.001 [Note: not dQ/Q = 0.001]
671        """
672        resolution = Pinhole1D(self.x, 0.001*np.ones_like(self.x),
673                               q_calc=self.x)
674        theory = 12.0-1000.0*resolution.q_calc
675        output = resolution.apply(theory)
676        answer = [
677            10.44785079, 9.84991299, 8.98101708,
678            7.99906585, 6.99998311, 6.00001689,
679            5.00093415, 4.01898292, 3.15008701, 2.55214921,
680            ]
681        np.testing.assert_allclose(output, answer, atol=1e-8)
682
683
684class IgorComparisonTest(unittest.TestCase):
685    """
686    Test resolution calculations against those returned by Igor.
687    """
688
689    def setUp(self):
690        self.pars = TEST_PARS_PINHOLE_SPHERE
691        from sasmodels import core
692        from sasmodels.models import sphere
693        self.model = core.load_model(sphere, dtype='double')
694
695    def _eval_sphere(self, pars, resolution):
696        from sasmodels import core
697        kernel = core.make_kernel(self.model, [resolution.q_calc])
698        theory = core.call_kernel(kernel, pars)
699        result = resolution.apply(theory)
700        kernel.release()
701        return result
702
703    def _compare(self, q, output, answer, tolerance):
704        #err = (output - answer)/answer
705        #idx = abs(err) >= tolerance
706        #problem = zip(q[idx], output[idx], answer[idx], err[idx])
707        #print("\n".join(str(v) for v in problem))
708        np.testing.assert_allclose(output, answer, rtol=tolerance)
709
710    def test_perfect(self):
711        """
712        Compare sphere model with NIST Igor SANS, no resolution smearing.
713        """
714        pars = TEST_PARS_SLIT_SPHERE
715        data_string = TEST_DATA_SLIT_SPHERE
716
717        data = np.loadtxt(data_string.split('\n')).T
718        q, width, answer, _ = data
719        resolution = Perfect1D(q)
720        output = self._eval_sphere(pars, resolution)
721        self._compare(q, output, answer, 1e-6)
722
723    def test_pinhole(self):
724        """
725        Compare pinhole resolution smearing with NIST Igor SANS
726        """
727        pars = TEST_PARS_PINHOLE_SPHERE
728        data_string = TEST_DATA_PINHOLE_SPHERE
729
730        data = np.loadtxt(data_string.split('\n')).T
731        q, q_width, answer = data
732        resolution = Pinhole1D(q, q_width)
733        output = self._eval_sphere(pars, resolution)
734        # TODO: relative error should be lower
735        self._compare(q, output, answer, 3e-4)
736
737    def test_pinhole_romberg(self):
738        """
739        Compare pinhole resolution smearing with romberg integration result.
740        """
741        pars = TEST_PARS_PINHOLE_SPHERE
742        data_string = TEST_DATA_PINHOLE_SPHERE
743        pars['radius'] *= 5
744        radius = pars['radius']
745
746        data = np.loadtxt(data_string.split('\n')).T
747        q, q_width, answer = data
748        answer = romberg_pinhole_1d(q, q_width, self.model, pars)
749        ## Getting 0.1% requires 5 sigma and 200 points per fringe
750        #q_calc = interpolate(pinhole_extend_q(q, q_width, nsigma=5),
751        #                     2*np.pi/radius/200)
752        #tol = 0.001
753        ## The default 3 sigma and no extra points gets 1%
754        q_calc, tol = None, 0.01
755        resolution = Pinhole1D(q, q_width, q_calc=q_calc)
756        output = self._eval_sphere(pars, resolution)
757        if 0: # debug plot
758            import matplotlib.pyplot as plt
759            resolution = Perfect1D(q)
760            source = self._eval_sphere(pars, resolution)
761            plt.loglog(q, source, '.')
762            plt.loglog(q, answer, '-', hold=True)
763            plt.loglog(q, output, '-', hold=True)
764            plt.show()
765        self._compare(q, output, answer, tol)
766
767    def test_slit(self):
768        """
769        Compare slit resolution smearing with NIST Igor SANS
770        """
771        pars = TEST_PARS_SLIT_SPHERE
772        data_string = TEST_DATA_SLIT_SPHERE
773
774        data = np.loadtxt(data_string.split('\n')).T
775        q, delta_qv, _, answer = data
776        resolution = Slit1D(q, width=delta_qv, height=0)
777        output = self._eval_sphere(pars, resolution)
778        # TODO: eliminate Igor test since it is too inaccurate to be useful.
779        # This means we can eliminate the test data as well, and instead
780        # use a generated q vector.
781        self._compare(q, output, answer, 0.5)
782
783    def test_slit_romberg(self):
784        """
785        Compare slit resolution smearing with romberg integration result.
786        """
787        pars = TEST_PARS_SLIT_SPHERE
788        data_string = TEST_DATA_SLIT_SPHERE
789        radius = pars['radius']
790
791        data = np.loadtxt(data_string.split('\n')).T
792        q, delta_qv, _, answer = data
793        answer = romberg_slit_1d(q, delta_qv, 0., self.model, pars)
794        q_calc = slit_extend_q(interpolate(q, 2*np.pi/radius/20),
795                               delta_qv[0], 0.)
796        resolution = Slit1D(q, width=delta_qv, height=0, q_calc=q_calc)
797        output = self._eval_sphere(pars, resolution)
798        # TODO: relative error should be lower
799        self._compare(q, output, answer, 0.025)
800
801    def test_ellipsoid(self):
802        """
803        Compare romberg integration for ellipsoid model.
804        """
805        from .core import load_model
806        pars = {
807            'scale':0.05,
808            'rpolar':500, 'requatorial':15000,
809            'sld':6, 'solvent_sld': 1,
810            }
811        form = load_model('ellipsoid', dtype='double')
812        q = np.logspace(log10(4e-5), log10(2.5e-2), 68)
813        width, height = 0.117, 0.
814        resolution = Slit1D(q, width=width, height=height)
815        answer = romberg_slit_1d(q, width, height, form, pars)
816        output = resolution.apply(eval_form(resolution.q_calc, form, pars))
817        # TODO: 10% is too much error; use better algorithm
818        #print(np.max(abs(answer-output)/answer))
819        self._compare(q, output, answer, 0.1)
820
821    #TODO: can sas q spacing be too sparse for the resolution calculation?
822    @unittest.skip("suppress sparse data test; not supported by current code")
823    def test_pinhole_sparse(self):
824        """
825        Compare pinhole resolution smearing with NIST Igor SANS on sparse data
826        """
827        pars = TEST_PARS_PINHOLE_SPHERE
828        data_string = TEST_DATA_PINHOLE_SPHERE
829
830        data = np.loadtxt(data_string.split('\n')).T
831        q, q_width, answer = data[:, ::20] # Take every nth point
832        resolution = Pinhole1D(q, q_width)
833        output = self._eval_sphere(pars, resolution)
834        self._compare(q, output, answer, 1e-6)
835
836
837# pinhole sphere parameters
838TEST_PARS_PINHOLE_SPHERE = {
839    'scale': 1.0, 'background': 0.01,
840    'radius': 60.0, 'sld': 1, 'solvent_sld': 6.3,
841    }
842# Q, dQ, I(Q) calculated by NIST Igor SANS package
843TEST_DATA_PINHOLE_SPHERE = """\
8440.001278 0.0002847 2538.41176383
8450.001562 0.0002905 2536.91820405
8460.001846 0.0002956 2535.13182479
8470.002130 0.0003017 2533.06217813
8480.002414 0.0003087 2530.70378586
8490.002698 0.0003165 2528.05024192
8500.002982 0.0003249 2525.10408349
8510.003266 0.0003340 2521.86667499
8520.003550 0.0003437 2518.33907750
8530.003834 0.0003539 2514.52246995
8540.004118 0.0003646 2510.41798319
8550.004402 0.0003757 2506.02690988
8560.004686 0.0003872 2501.35067884
8570.004970 0.0003990 2496.38678318
8580.005253 0.0004112 2491.16237596
8590.005537 0.0004237 2485.63911673
8600.005821 0.0004365 2479.83657083
8610.006105 0.0004495 2473.75676948
8620.006389 0.0004628 2467.40145990
8630.006673 0.0004762 2460.77293372
8640.006957 0.0004899 2453.86724627
8650.007241 0.0005037 2446.69623838
8660.007525 0.0005177 2439.25775219
8670.007809 0.0005318 2431.55421398
8680.008093 0.0005461 2423.58785521
8690.008377 0.0005605 2415.36158137
8700.008661 0.0005750 2406.87009473
8710.008945 0.0005896 2398.12841186
8720.009229 0.0006044 2389.13360806
8730.009513 0.0006192 2379.88958042
8740.009797 0.0006341 2370.39776774
8750.010080 0.0006491 2360.69528793
8760.010360 0.0006641 2350.85169027
8770.010650 0.0006793 2340.42023633
8780.010930 0.0006945 2330.11206013
8790.011220 0.0007097 2319.20109972
8800.011500 0.0007251 2308.43503981
8810.011780 0.0007404 2297.44820179
8820.012070 0.0007558 2285.83853677
8830.012350 0.0007713 2274.41290746
8840.012640 0.0007868 2262.36219581
8850.012920 0.0008024 2250.51169731
8860.013200 0.0008180 2238.45596231
8870.013490 0.0008336 2225.76495666
8880.013770 0.0008493 2213.29618391
8890.014060 0.0008650 2200.19110751
8900.014340 0.0008807 2187.34050325
8910.014620 0.0008965 2174.30529864
8920.014910 0.0009123 2160.61632548
8930.015190 0.0009281 2147.21038112
8940.015470 0.0009440 2133.62023580
8950.015760 0.0009598 2119.37907426
8960.016040 0.0009757 2105.45234903
8970.016330 0.0009916 2090.86319102
8980.016610 0.0010080 2076.60576032
8990.016890 0.0010240 2062.19214565
9000.017180 0.0010390 2047.10550219
9010.017460 0.0010550 2032.38715621
9020.017740 0.0010710 2017.52560123
9030.018030 0.0010880 2001.99124318
9040.018310 0.0011040 1986.84662060
9050.018600 0.0011200 1971.03389745
9060.018880 0.0011360 1955.61395119
9070.019160 0.0011520 1940.08291563
9080.019450 0.0011680 1923.87672225
9090.019730 0.0011840 1908.10656374
9100.020020 0.0012000 1891.66297192
9110.020300 0.0012160 1875.66789021
9120.020580 0.0012320 1859.56357196
9130.020870 0.0012490 1842.79468290
9140.021150 0.0012650 1826.50064489
9150.021430 0.0012810 1810.11533702
9160.021720 0.0012970 1793.06840882
9170.022000 0.0013130 1776.51153580
9180.022280 0.0013290 1759.87201249
9190.022570 0.0013460 1742.57354412
9200.022850 0.0013620 1725.79397319
9210.023140 0.0013780 1708.35831550
9220.023420 0.0013940 1691.45256069
9230.023700 0.0014110 1674.48561783
9240.023990 0.0014270 1656.86525366
9250.024270 0.0014430 1639.79847285
9260.024550 0.0014590 1622.68887088
9270.024840 0.0014760 1604.96421100
9280.025120 0.0014920 1587.85768129
9290.025410 0.0015080 1569.99297335
9300.025690 0.0015240 1552.84580279
9310.025970 0.0015410 1535.54074115
9320.026260 0.0015570 1517.75249337
9330.026540 0.0015730 1500.40115023
9340.026820 0.0015900 1483.03632237
9350.027110 0.0016060 1465.05942429
9360.027390 0.0016220 1447.67682181
9370.027670 0.0016390 1430.46495191
9380.027960 0.0016550 1412.49232282
9390.028240 0.0016710 1395.13182318
9400.028520 0.0016880 1377.93439837
9410.028810 0.0017040 1359.99528971
9420.029090 0.0017200 1342.67274512
9430.029370 0.0017370 1325.55375609
944"""
945
946# Slit sphere parameters
947TEST_PARS_SLIT_SPHERE = {
948    'scale': 0.01, 'background': 0.01,
949    'radius': 60000, 'sld': 1, 'solvent_sld': 4,
950    }
951# Q dQ I(Q) I_smeared(Q)
952TEST_DATA_SLIT_SPHERE = """\
9532.26097e-05 0.117 5.5781372896e+09 1.4626077708e+06
9542.53847e-05 0.117 5.0363141458e+09 1.3117318023e+06
9552.81597e-05 0.117 4.4850108103e+09 1.1594863713e+06
9563.09347e-05 0.117 3.9364658459e+09 1.0094881630e+06
9573.37097e-05 0.117 3.4019975074e+09 8.6518941303e+05
9583.92597e-05 0.117 2.4139519814e+09 6.0232158311e+05
9594.48097e-05 0.117 1.5816877820e+09 3.8739994090e+05
9605.03597e-05 0.117 9.3715407224e+08 2.2745304775e+05
9615.59097e-05 0.117 4.8387917428e+08 1.2101295768e+05
9626.14597e-05 0.117 2.0193586928e+08 6.0055107771e+04
9636.70097e-05 0.117 5.5886110911e+07 3.2749521065e+04
9647.25597e-05 0.117 3.7782348010e+06 2.6350963616e+04
9657.81097e-05 0.117 5.3407817904e+06 2.9624963314e+04
9668.36597e-05 0.117 2.7975485523e+07 3.4403962254e+04
9678.92097e-05 0.117 4.9845448282e+07 3.6130017903e+04
9689.47597e-05 0.117 6.0092588905e+07 3.3495107849e+04
9691.00310e-04 0.117 5.6823430831e+07 2.7475726279e+04
9701.05860e-04 0.117 4.3857024036e+07 2.0144282226e+04
9711.11410e-04 0.117 2.7277144760e+07 1.3647403260e+04
9721.22510e-04 0.117 3.3119334113e+06 6.6519711526e+03
9731.33610e-04 0.117 1.4412859402e+06 6.9726212813e+03
9741.44710e-04 0.117 8.5620162463e+06 8.1441335775e+03
9751.55810e-04 0.117 9.6957429033e+06 6.4559996521e+03
9761.66910e-04 0.117 4.3818341914e+06 3.6252154156e+03
9771.78010e-04 0.117 2.7448997387e+05 2.4006505342e+03
9781.89110e-04 0.117 8.0472009936e+05 2.8187789089e+03
9792.00210e-04 0.117 2.8149552834e+06 3.0915662855e+03
9802.11310e-04 0.117 2.7510907861e+06 2.3722530293e+03
9812.22410e-04 0.117 1.0053133293e+06 1.4473468311e+03
9822.33510e-04 0.117 5.8428305052e+03 1.2048540556e+03
9832.44610e-04 0.117 5.1699305004e+05 1.4625670042e+03
9842.55710e-04 0.117 1.2120227268e+06 1.5010705973e+03
9852.66810e-04 0.117 9.7896842846e+05 1.1336343426e+03
9862.77910e-04 0.117 2.5507264791e+05 8.1848818080e+02
9873.05660e-04 0.117 5.2403101181e+05 7.4913374357e+02
9883.33410e-04 0.117 5.8699343809e+04 4.4669964560e+02
9893.61160e-04 0.117 3.0844327150e+05 4.6774007542e+02
9903.88910e-04 0.117 8.3360142970e+03 2.7169550220e+02
9914.16660e-04 0.117 1.8630080583e+05 3.0710983679e+02
9924.44410e-04 0.117 3.1616804732e-01 1.7959006831e+02
9934.72160e-04 0.117 1.1299016314e+05 2.0763952339e+02
9944.99910e-04 0.117 2.9952522747e+03 1.2536542765e+02
9955.27660e-04 0.117 6.7625695649e+04 1.4013969777e+02
9965.55410e-04 0.117 7.6927460089e+03 8.2145593180e+01
9976.10910e-04 0.117 1.1229057779e+04 8.4519745643e+01
9986.66410e-04 0.117 1.3035567943e+04 8.1554625609e+01
9997.21910e-04 0.117 1.3309931343e+04 7.4437319172e+01
10007.77410e-04 0.117 1.2462626212e+04 6.4697088261e+01
10018.32910e-04 0.117 1.0912927143e+04 5.3773301044e+01
10028.88410e-04 0.117 9.0172597469e+03 4.2843375753e+01
10039.43910e-04 0.117 7.0496495917e+03 3.2771032724e+01
10049.99410e-04 0.117 5.2030483682e+03 2.4113557144e+01
10051.05491e-03 0.117 3.5988976711e+03 1.7160773658e+01
10061.11041e-03 0.117 2.2996060652e+03 1.2016626459e+01
10071.22141e-03 0.117 6.4766590598e+02 6.0373017740e+00
10081.33241e-03 0.117 4.1963483264e+01 4.5215452974e+00
10091.44341e-03 0.117 6.3370708246e+01 5.1054681903e+00
10101.55441e-03 0.117 3.0736750577e+02 5.9176165298e+00
10111.66541e-03 0.117 5.0327682399e+02 5.9815000189e+00
10121.77641e-03 0.117 5.4084331454e+02 5.1634639625e+00
10131.88741e-03 0.117 4.3488671756e+02 3.8535158148e+00
10141.99841e-03 0.117 2.6322287860e+02 2.5824997753e+00
10152.10941e-03 0.117 1.0793633150e+02 1.7315517194e+00
10162.22041e-03 0.117 1.8474448850e+01 1.4077213604e+00
10172.33141e-03 0.117 1.5864062279e+00 1.4771560682e+00
10182.44241e-03 0.117 3.2267213848e+01 1.6916253448e+00
10192.55341e-03 0.117 7.4289116207e+01 1.8274751193e+00
10202.66441e-03 0.117 9.9000521929e+01 1.7706812289e+00
1021"""
1022
1023def main():
1024    """
1025    Run tests given is sys.argv.
1026
1027    Returns 0 if success or 1 if any tests fail.
1028    """
1029    import sys
1030    import xmlrunner
1031
1032    suite = unittest.TestSuite()
1033    suite.addTest(unittest.defaultTestLoader.loadTestsFromModule(sys.modules[__name__]))
1034
1035    runner = xmlrunner.XMLTestRunner(output='logs')
1036    result = runner.run(suite)
1037    return 1 if result.failures or result.errors else 0
1038
1039
1040############################################################################
1041# usage demo
1042############################################################################
1043
1044def _eval_demo_1d(resolution, title):
1045    import sys
1046    from sasmodels import core
1047    name = sys.argv[1] if len(sys.argv) > 1 else 'cylinder'
1048
1049    if name == 'cylinder':
1050        pars = {'length':210, 'radius':500}
1051    elif name == 'teubner_strey':
1052        pars = {'a2':0.003, 'c1':-1e4, 'c2':1e10, 'background':0.312643}
1053    elif name == 'sphere' or name == 'spherepy':
1054        pars = TEST_PARS_SLIT_SPHERE
1055    elif name == 'ellipsoid':
1056        pars = {
1057            'scale':0.05,
1058            'rpolar':500, 'requatorial':15000,
1059            'sld':6, 'solvent_sld': 1,
1060            }
1061    else:
1062        pars = {}
1063    defn = core.load_model_definition(name)
1064    model = core.load_model(defn)
1065
1066    kernel = core.make_kernel(model, [resolution.q_calc])
1067    theory = core.call_kernel(kernel, pars)
1068    Iq = resolution.apply(theory)
1069
1070    if isinstance(resolution, Slit1D):
1071        width, height = resolution.width, resolution.height
1072        Iq_romb = romberg_slit_1d(resolution.q, width, height, model, pars)
1073    else:
1074        dq = resolution.q_width
1075        Iq_romb = romberg_pinhole_1d(resolution.q, dq, model, pars)
1076
1077    import matplotlib.pyplot as plt
1078    plt.loglog(resolution.q_calc, theory, label='unsmeared')
1079    plt.loglog(resolution.q, Iq, label='smeared', hold=True)
1080    plt.loglog(resolution.q, Iq_romb, label='romberg smeared', hold=True)
1081    plt.legend()
1082    plt.title(title)
1083    plt.xlabel("Q (1/Ang)")
1084    plt.ylabel("I(Q) (1/cm)")
1085
1086def demo_pinhole_1d():
1087    """
1088    Show example of pinhole smearing.
1089    """
1090    q = np.logspace(-4, np.log10(0.2), 400)
1091    q_width = 0.1*q
1092    resolution = Pinhole1D(q, q_width)
1093    _eval_demo_1d(resolution, title="10% dQ/Q Pinhole Resolution")
1094
1095def demo_slit_1d():
1096    """
1097    Show example of slit smearing.
1098    """
1099    q = np.logspace(-4, np.log10(0.2), 100)
1100    w = h = 0.
1101    #w = 0.000000277790
1102    w = 0.0277790
1103    #h = 0.00277790
1104    #h = 0.0277790
1105    resolution = Slit1D(q, w, h)
1106    _eval_demo_1d(resolution, title="(%g,%g) Slit Resolution"%(w, h))
1107
1108def demo():
1109    """
1110    Run the resolution demos.
1111    """
1112    import matplotlib.pyplot as plt
1113    plt.subplot(121)
1114    demo_pinhole_1d()
1115    #plt.yscale('linear')
1116    plt.subplot(122)
1117    demo_slit_1d()
1118    #plt.yscale('linear')
1119    plt.show()
1120
1121
1122if __name__ == "__main__":
1123    #demo()
1124    main()
Note: See TracBrowser for help on using the repository browser.