source: sasmodels/sasmodels/models/vesicle.py @ 0159b5e

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 0159b5e was 0159b5e, checked in by Torin Cooper-Bennun <torin.cooper-bennun@…>, 6 years ago

Merge branch 'master' into beta_approx

  • Property mode set to 100644
File size: 5.4 KB
Line 
1r"""
2Definition
3----------
4
5This model provides the form factor, *P(q)*, for an unilamellar vesicle and is
6effectively identical to the hollow sphere reparameterized to be
7more intuitive for a vesicle and normalizing the form factor by the volume of
8the shell. The 1D scattering intensity is calculated in the following way
9(Guinier,1955\ [#Guinier1955]_)
10
11.. math::
12
13    P(q) = \frac{\phi}{V_\text{shell}} \left[
14           \frac{3V_{\text{core}}({\rho_{\text{solvent}}
15           - \rho_{\text{shell}})j_1(qR_{\text{core}})}}{qR_{\text{core}}}
16           + \frac{3V_{\text{tot}}(\rho_{\text{shell}}
17           - \rho_{\text{solvent}}) j_1(qR_{\text{tot}})}{qR_{\text{tot}}}
18           \right]^2 + \text{background}
19
20
21where $\phi$ is the volume fraction of shell material, $V_{shell}$ is the volume
22of the shell, $V_{\text{cor}}$ is the volume of the core, $V_{\text{tot}}$ is
23the total volume, $R_{\text{core}}$ is the radius of the core, $R_{\text{tot}}$
24is the outer radius of the shell, $\rho_{\text{solvent}}$ is the scattering
25length density of the solvent (which is the same as for the core in this case),
26$\rho_{\text{scale}}$ is the scattering length density of the shell, background
27is a flat background level (due for example to incoherent scattering in the
28case of neutrons), and $j_1$ is the spherical bessel function
29$j_1 = (\sin(x) - x \cos(x))/ x^2$.
30
31The functional form is identical to a "typical" core-shell structure, except
32that the scattering is normalized by the volume that is contributing to the
33scattering, namely the volume of the shell alone, the scattering length density
34of the core is fixed the same as that of the solvent, the scale factor when the
35data are on an absolute scale is equivalent to the volume fraction of material
36in the shell rather than the entire core+shell sphere, and the parameterization
37is done in terms of the core radius = $R_{\text{core}}$ and the shell
38thickness = $R_{\text{tot}} - R_{\text{core}}$.
39
40.. figure:: img/vesicle_geometry.jpg
41
42    Vesicle geometry.
43
44The 2D scattering intensity is the same as *P(q)* above, regardless of the
45orientation of the *q* vector which is defined as
46
47.. math::
48
49    q = \sqrt{q_x^2 + q_y^2}
50
51
52NB: The outer most radius (= *radius* + *thickness*) is used as the effective
53radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied.
54
55
56References
57----------
58
59.. [#Guinier1955] A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and
60   Sons, New York, (1955)
61
62
63Authorship and Verification
64----------------------------
65
66* **Author:** NIST IGOR/DANSE **Date:** pre 2010
67* **Last Modified by:** Paul Butler **Date:** March 20, 2016
68* **Last Reviewed by:** Paul Butler **Date:** September 7, 2018
69"""
70
71import numpy as np
72from numpy import pi, inf
73
74name = "vesicle"
75title = "Vesicle model representing a hollow sphere"
76description = """
77    Model parameters:
78        radius : the core radius of the vesicle
79        thickness: the shell thickness
80        sld: the shell SLD
81        sld_solvent: the solvent (and core) SLD
82        background: incoherent background
83        volfraction: shell volume fraction
84        scale : scale factor = 1 if on absolute scale"""
85category = "shape:sphere"
86
87#             [ "name", "units", default, [lower, upper], "type", "description"],
88parameters = [["sld", "1e-6/Ang^2", 0.5, [-inf, inf], "sld",
89               "vesicle shell scattering length density"],
90              ["sld_solvent", "1e-6/Ang^2", 6.36, [-inf, inf], "sld",
91               "solvent scattering length density"],
92              ["volfraction", "", 0.05, [0, 1.0], "",
93               "volume fraction of shell"],
94              ["radius", "Ang", 100, [0, inf], "volume",
95               "vesicle core radius"],
96              ["thickness", "Ang", 30, [0, inf], "volume",
97               "vesicle shell thickness"],
98             ]
99
100source = ["lib/sas_3j1x_x.c", "vesicle.c"]
101have_Fq = True
102
103def ER(radius, thickness):
104    '''
105    returns the effective radius used in the S*P calculation
106
107    :param radius: core radius
108    :param thickness: shell thickness
109    '''
110    return radius + thickness
111
112def VR(radius, thickness):
113    '''
114    returns the volumes of the shell and of the whole sphere including the
115    core plus shell - is used to normalize when including polydispersity.
116
117    :param radius: core radius
118    :param thickness: shell thickness
119    :return whole: volume of core and shell
120    :return whole-core: volume of the shell
121    '''
122
123    whole = 4./3. * pi * (radius + thickness)**3
124    core = 4./3. * pi * radius**3
125    return whole, whole - core
126
127def random():
128    total_radius = 10**np.random.uniform(1.3, 5)
129    radius = total_radius * np.random.uniform(0, 1)
130    thickness = total_radius - radius
131    volfraction = 10**np.random.uniform(-3, -1)
132    pars = dict(
133        #background=0,
134        scale=1,  # volfraction is part of the model, so scale=1
135        radius=radius,
136        thickness=thickness,
137        volfraction=volfraction,
138    )
139    return pars
140
141# parameters for demo
142demo = dict(sld=0.5, sld_solvent=6.36,
143            volfraction=0.05,
144            radius=100, thickness=30,
145            radius_pd=.2, radius_pd_n=10,
146            thickness_pd=.2, thickness_pd_n=10)
147
148# NOTE: test results taken from values returned by SasView 3.1.2, with
149# 0.001 added for a non-zero default background.
150tests = [[{}, 0.0005, 859.916526646],
151         [{}, 0.100600200401, 1.77063682331],
152         [{}, 0.5, 0.00355351388906],
153         [{}, 'ER', 130.],
154         [{}, 'VR', 0.54483386436],
155        ]
Note: See TracBrowser for help on using the repository browser.