1 | r""" |
---|
2 | Definition |
---|
3 | ---------- |
---|
4 | |
---|
5 | This model provides the form factor, *P(q)*, for an unilamellar vesicle and is |
---|
6 | effectively identical to the hollow sphere reparameterized to be |
---|
7 | more intuitive for a vesicle and normalizing the form factor by the volume of |
---|
8 | the shell. The 1D scattering intensity is calculated in the following way |
---|
9 | (Guinier,1955\ [#Guinier1955]_) |
---|
10 | |
---|
11 | .. math:: |
---|
12 | |
---|
13 | P(q) = \frac{\phi}{V_\text{shell}} \left[ |
---|
14 | \frac{3V_{\text{core}}({\rho_{\text{solvent}} |
---|
15 | - \rho_{\text{shell}})j_1(qR_{\text{core}})}}{qR_{\text{core}}} |
---|
16 | + \frac{3V_{\text{tot}}(\rho_{\text{shell}} |
---|
17 | - \rho_{\text{solvent}}) j_1(qR_{\text{tot}})}{qR_{\text{tot}}} |
---|
18 | \right]^2 + \text{background} |
---|
19 | |
---|
20 | |
---|
21 | where $\phi$ is the volume fraction of shell material, $V_{shell}$ is the volume |
---|
22 | of the shell, $V_{\text{cor}}$ is the volume of the core, $V_{\text{tot}}$ is |
---|
23 | the total volume, $R_{\text{core}}$ is the radius of the core, $R_{\text{tot}}$ |
---|
24 | is the outer radius of the shell, $\rho_{\text{solvent}}$ is the scattering |
---|
25 | length density of the solvent (which is the same as for the core in this case), |
---|
26 | $\rho_{\text{scale}}$ is the scattering length density of the shell, background |
---|
27 | is a flat background level (due for example to incoherent scattering in the |
---|
28 | case of neutrons), and $j_1$ is the spherical bessel function |
---|
29 | $j_1 = (\sin(x) - x \cos(x))/ x^2$. |
---|
30 | |
---|
31 | The functional form is identical to a "typical" core-shell structure, except |
---|
32 | that the scattering is normalized by the volume that is contributing to the |
---|
33 | scattering, namely the volume of the shell alone, the scattering length density |
---|
34 | of the core is fixed the same as that of the solvent, the scale factor when the |
---|
35 | data are on an absolute scale is equivalent to the volume fraction of material |
---|
36 | in the shell rather than the entire core+shell sphere, and the parameterization |
---|
37 | is done in terms of the core radius = $R_{\text{core}}$ and the shell |
---|
38 | thickness = $R_{\text{tot}} - R_{\text{core}}$. |
---|
39 | |
---|
40 | .. figure:: img/vesicle_geometry.jpg |
---|
41 | |
---|
42 | Vesicle geometry. |
---|
43 | |
---|
44 | The 2D scattering intensity is the same as *P(q)* above, regardless of the |
---|
45 | orientation of the *q* vector which is defined as |
---|
46 | |
---|
47 | .. math:: |
---|
48 | |
---|
49 | q = \sqrt{q_x^2 + q_y^2} |
---|
50 | |
---|
51 | |
---|
52 | NB: The outer most radius (= *radius* + *thickness*) is used as the effective |
---|
53 | radius for *S(Q)* when *P(Q)* \* *S(Q)* is applied. |
---|
54 | |
---|
55 | |
---|
56 | References |
---|
57 | ---------- |
---|
58 | |
---|
59 | .. [#Guinier1955] A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and |
---|
60 | Sons, New York, (1955) |
---|
61 | |
---|
62 | Authorship and Verification |
---|
63 | ---------------------------- |
---|
64 | |
---|
65 | * **Author:** NIST IGOR/DANSE **Date:** pre 2010 |
---|
66 | * **Last Modified by:** Paul Butler **Date:** March 20, 2016 |
---|
67 | * **Last Reviewed by:** Paul Butler **Date:** September 7, 2018 |
---|
68 | """ |
---|
69 | |
---|
70 | import numpy as np |
---|
71 | from numpy import inf |
---|
72 | |
---|
73 | name = "vesicle" |
---|
74 | title = "Vesicle model representing a hollow sphere" |
---|
75 | description = """ |
---|
76 | Model parameters: |
---|
77 | radius : the core radius of the vesicle |
---|
78 | thickness: the shell thickness |
---|
79 | sld: the shell SLD |
---|
80 | sld_solvent: the solvent (and core) SLD |
---|
81 | background: incoherent background |
---|
82 | volfraction: shell volume fraction |
---|
83 | scale : scale factor = 1 if on absolute scale""" |
---|
84 | category = "shape:sphere" |
---|
85 | |
---|
86 | # [ "name", "units", default, [lower, upper], "type", "description"], |
---|
87 | parameters = [["sld", "1e-6/Ang^2", 0.5, [-inf, inf], "sld", |
---|
88 | "vesicle shell scattering length density"], |
---|
89 | ["sld_solvent", "1e-6/Ang^2", 6.36, [-inf, inf], "sld", |
---|
90 | "solvent scattering length density"], |
---|
91 | ["volfraction", "", 0.05, [0, 1.0], "", |
---|
92 | "volume fraction of shell"], |
---|
93 | ["radius", "Ang", 100, [0, inf], "volume", |
---|
94 | "vesicle core radius"], |
---|
95 | ["thickness", "Ang", 30, [0, inf], "volume", |
---|
96 | "vesicle shell thickness"], |
---|
97 | ] |
---|
98 | |
---|
99 | source = ["lib/sas_3j1x_x.c", "vesicle.c"] |
---|
100 | have_Fq = True |
---|
101 | radius_effective_modes = ["outer radius"] |
---|
102 | |
---|
103 | def random(): |
---|
104 | """Return a random parameter set for the model.""" |
---|
105 | total_radius = 10**np.random.uniform(1.3, 5) |
---|
106 | radius = total_radius * np.random.uniform(0, 1) |
---|
107 | thickness = total_radius - radius |
---|
108 | volfraction = 10**np.random.uniform(-3, -1) |
---|
109 | pars = dict( |
---|
110 | #background=0, |
---|
111 | scale=1, # volfraction is part of the model, so scale=1 |
---|
112 | radius=radius, |
---|
113 | thickness=thickness, |
---|
114 | volfraction=volfraction, |
---|
115 | ) |
---|
116 | return pars |
---|
117 | |
---|
118 | # parameters for demo |
---|
119 | demo = dict(sld=0.5, sld_solvent=6.36, |
---|
120 | volfraction=0.05, |
---|
121 | radius=100, thickness=30, |
---|
122 | radius_pd=.2, radius_pd_n=10, |
---|
123 | thickness_pd=.2, thickness_pd_n=10) |
---|
124 | |
---|
125 | # NOTE: test results taken from values returned by SasView 3.1.2, with |
---|
126 | # 0.001 added for a non-zero default background. |
---|
127 | tests = [[{}, 0.0005, 859.916526646], |
---|
128 | [{}, 0.100600200401, 1.77063682331], |
---|
129 | [{}, 0.5, 0.00355351388906], |
---|
130 | [{}, 0.1, None, None, 130., None, 1./0.54483386436], # R_eff, form:shell |
---|
131 | ] |
---|