source: sasmodels/sasmodels/models/unified_power_Rg.py @ 48462b0

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 48462b0 was 48462b0, checked in by Paul Kienzle <pkienzle@…>, 7 years ago

tuned random model generation for even more models

  • Property mode set to 100644
File size: 4.4 KB
Line 
1r"""
2Definition
3----------
4
5This model employs the empirical multiple level unified Exponential/Power-law
6fit method developed by Beaucage. Four functions are included so that 1, 2, 3,
7or 4 levels can be used. In addition a 0 level has been added which simply
8calculates
9
10.. math::
11
12    I(q) = \text{scale} / q + \text{background}
13
14The Beaucage method is able to reasonably approximate the scattering from
15many different types of particles, including fractal clusters, random coils
16(Debye equation), ellipsoidal particles, etc.
17
18The model works best for mass fractal systems characterized by Porod exponents
19between 5/3 and 3. It should not be used for surface fractal systems. Hammouda
20(2010) has pointed out a deficiency in the way this model handles the
21transitioning between the Guinier and Porod regimes and which can create
22artefacts that appear as kinks in the fitted model function.
23
24Also see the Guinier_Porod model.
25
26The empirical fit function is:
27
28.. math::
29
30    I(q) = \text{background}
31    + \sum_{i=1}^N \Bigl[
32        G_i \exp\Bigl(-\frac{q^2R_{gi}^2}{3}\Bigr)
33       + B_i \exp\Bigl(-\frac{q^2R_{g(i+1)}^2}{3}\Bigr)
34             \Bigl(\frac{1}{q_i^*}\Bigr)^{P_i} \Bigr]
35
36where
37
38.. math::
39
40    q_i^* = q \left[\operatorname{erf}
41            \left(\frac{q R_{gi}}{\sqrt{6}}\right)
42        \right]^{-3}
43
44
45For each level, the four parameters $G_i$, $R_{gi}$, $B_i$ and $P_i$ must
46be chosen.  Beaucage has an additional factor $k$ in the definition of
47$q_i^*$ which is ignored here.
48
49For example, to approximate the scattering from random coils (Debye equation),
50set $R_{gi}$ as the Guinier radius, $P_i = 2$, and $B_i = 2 G_i / R_{gi}$
51
52See the references for further information on choosing the parameters.
53
54For 2D data: The 2D scattering intensity is calculated in the same way as 1D,
55where the $q$ vector is defined as
56
57.. math::
58
59    q = \sqrt{q_x^2 + q_y^2}
60
61
62References
63----------
64
65G Beaucage, *J. Appl. Cryst.*, 28 (1995) 717-728
66
67G Beaucage, *J. Appl. Cryst.*, 29 (1996) 134-146
68
69B Hammouda, *Analysis of the Beaucage model, J. Appl. Cryst.*, (2010), 43, 1474-1478
70
71"""
72
73from __future__ import division
74
75import numpy as np
76from numpy import inf, exp, sqrt, errstate
77from scipy.special import erf
78
79category = "shape-independent"
80name = "unified_power_Rg"
81title = "Unified Power Rg"
82description = """
83        The Beaucage model employs the empirical multiple level unified
84        Exponential/Power-law fit method developed by G. Beaucage. Four functions
85        are included so that 1, 2, 3, or 4 levels can be used.
86        """
87
88# pylint: disable=bad-whitespace, line-too-long
89parameters = [
90    ["level",     "",     1,      [1, 6], "", "Level number"],
91    ["rg[level]", "Ang",  15.8,   [0, inf], "", "Radius of gyration"],
92    ["power[level]", "",  4,      [-inf, inf], "", "Power"],
93    ["B[level]",  "1/cm", 4.5e-6, [-inf, inf], "", ""],
94    ["G[level]",  "1/cm", 400,    [0, inf], "", ""],
95    ]
96# pylint: enable=bad-whitespace, line-too-long
97
98def Iq(q, level, rg, power, B, G):
99    level = int(level + 0.5)
100    if level == 0:
101        with errstate(divide='ignore'):
102            return 1./q
103
104    with errstate(divide='ignore', invalid='ignore'):
105        result = np.zeros(q.shape, 'd')
106        for i in range(level):
107            exp_now = exp(-(q*rg[i])**2/3.)
108            pow_now = (erf(q*rg[i]/sqrt(6.))**3/q)**power[i]
109            if i < level-1:
110                exp_next = exp(-(q*rg[i+1])**2/3.)
111            else:
112                exp_next = 1
113            result += G[i]*exp_now + B[i]*exp_next*pow_now
114
115    result[q == 0] = np.sum(G[:level])
116    return result
117
118Iq.vectorized = True
119
120def random():
121    import numpy as np
122    from scipy.special import gamma
123    level = np.minimum(np.random.poisson(0.5) + 1, 6)
124    n = level
125    power = np.random.uniform(1.6, 3, n)
126    rg = 10**np.random.uniform(1, 5, n)
127    G = np.random.uniform(0.1, 10, n)**2 * 10**np.random.uniform(0.3, 3, n)
128    B = G * power / rg**power * gamma(power/2)
129    scale = 10**np.random.uniform(1, 4)
130    pars = dict(
131        #background=0,
132        scale=scale,
133        level=level,
134    )
135    pars.update(("power%d"%(k+1), v) for k, v in enumerate(power))
136    pars.update(("rg%d"%(k+1), v) for k, v in enumerate(rg))
137    pars.update(("B%d"%(k+1), v) for k, v in enumerate(B))
138    pars.update(("G%d"%(k+1), v) for k, v in enumerate(G))
139    return pars
140
141demo = dict(
142    level=2,
143    rg=[15.8, 21],
144    power=[4, 2],
145    B=[4.5e-6, 0.0006],
146    G=[400, 3],
147    scale=1.,
148    background=0.,
149)
Note: See TracBrowser for help on using the repository browser.