source: sasmodels/sasmodels/models/unified_power_Rg.py @ 2d81cfe

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 2d81cfe was 2d81cfe, checked in by Paul Kienzle <pkienzle@…>, 6 years ago

lint

  • Property mode set to 100644
File size: 4.3 KB
Line 
1r"""
2Definition
3----------
4
5This model employs the empirical multiple level unified Exponential/Power-law
6fit method developed by Beaucage. Four functions are included so that 1, 2, 3,
7or 4 levels can be used. In addition a 0 level has been added which simply
8calculates
9
10.. math::
11
12    I(q) = \text{scale} / q + \text{background}
13
14The Beaucage method is able to reasonably approximate the scattering from
15many different types of particles, including fractal clusters, random coils
16(Debye equation), ellipsoidal particles, etc.
17
18The model works best for mass fractal systems characterized by Porod exponents
19between 5/3 and 3. It should not be used for surface fractal systems. Hammouda
20(2010) has pointed out a deficiency in the way this model handles the
21transitioning between the Guinier and Porod regimes and which can create
22artefacts that appear as kinks in the fitted model function.
23
24Also see the Guinier_Porod model.
25
26The empirical fit function is:
27
28.. math::
29
30    I(q) = \text{background}
31    + \sum_{i=1}^N \Bigl[
32        G_i \exp\Bigl(-\frac{q^2R_{gi}^2}{3}\Bigr)
33       + B_i \exp\Bigl(-\frac{q^2R_{g(i+1)}^2}{3}\Bigr)
34             \Bigl(\frac{1}{q_i^*}\Bigr)^{P_i} \Bigr]
35
36where
37
38.. math::
39
40    q_i^* = q \left[\operatorname{erf}
41            \left(\frac{q R_{gi}}{\sqrt{6}}\right)
42        \right]^{-3}
43
44
45For each level, the four parameters $G_i$, $R_{gi}$, $B_i$ and $P_i$ must
46be chosen.  Beaucage has an additional factor $k$ in the definition of
47$q_i^*$ which is ignored here.
48
49For example, to approximate the scattering from random coils (Debye equation),
50set $R_{gi}$ as the Guinier radius, $P_i = 2$, and $B_i = 2 G_i / R_{gi}$
51
52See the references for further information on choosing the parameters.
53
54For 2D data: The 2D scattering intensity is calculated in the same way as 1D,
55where the $q$ vector is defined as
56
57.. math::
58
59    q = \sqrt{q_x^2 + q_y^2}
60
61
62References
63----------
64
65G Beaucage, *J. Appl. Cryst.*, 28 (1995) 717-728
66
67G Beaucage, *J. Appl. Cryst.*, 29 (1996) 134-146
68
69B Hammouda, *Analysis of the Beaucage model, J. Appl. Cryst.*, (2010), 43, 1474-1478
70"""
71
72from __future__ import division
73
74import numpy as np
75from numpy import inf, exp, sqrt, errstate
76from scipy.special import erf, gamma
77
78category = "shape-independent"
79name = "unified_power_Rg"
80title = "Unified Power Rg"
81description = """
82        The Beaucage model employs the empirical multiple level unified
83        Exponential/Power-law fit method developed by G. Beaucage. Four functions
84        are included so that 1, 2, 3, or 4 levels can be used.
85        """
86
87# pylint: disable=bad-whitespace, line-too-long
88parameters = [
89    ["level",     "",     1,      [1, 6], "", "Level number"],
90    ["rg[level]", "Ang",  15.8,   [0, inf], "", "Radius of gyration"],
91    ["power[level]", "",  4,      [-inf, inf], "", "Power"],
92    ["B[level]",  "1/cm", 4.5e-6, [-inf, inf], "", ""],
93    ["G[level]",  "1/cm", 400,    [0, inf], "", ""],
94    ]
95# pylint: enable=bad-whitespace, line-too-long
96
97def Iq(q, level, rg, power, B, G):
98    level = int(level + 0.5)
99    if level == 0:
100        with errstate(divide='ignore'):
101            return 1./q
102
103    with errstate(divide='ignore', invalid='ignore'):
104        result = np.zeros(q.shape, 'd')
105        for i in range(level):
106            exp_now = exp(-(q*rg[i])**2/3.)
107            pow_now = (erf(q*rg[i]/sqrt(6.))**3/q)**power[i]
108            if i < level-1:
109                exp_next = exp(-(q*rg[i+1])**2/3.)
110            else:
111                exp_next = 1
112            result += G[i]*exp_now + B[i]*exp_next*pow_now
113
114    result[q == 0] = np.sum(G[:level])
115    return result
116
117Iq.vectorized = True
118
119def random():
120    level = np.minimum(np.random.poisson(0.5) + 1, 6)
121    n = level
122    power = np.random.uniform(1.6, 3, n)
123    rg = 10**np.random.uniform(1, 5, n)
124    G = np.random.uniform(0.1, 10, n)**2 * 10**np.random.uniform(0.3, 3, n)
125    B = G * power / rg**power * gamma(power/2)
126    scale = 10**np.random.uniform(1, 4)
127    pars = dict(
128        #background=0,
129        scale=scale,
130        level=level,
131    )
132    pars.update(("power%d"%(k+1), v) for k, v in enumerate(power))
133    pars.update(("rg%d"%(k+1), v) for k, v in enumerate(rg))
134    pars.update(("B%d"%(k+1), v) for k, v in enumerate(B))
135    pars.update(("G%d"%(k+1), v) for k, v in enumerate(G))
136    return pars
137
138demo = dict(
139    level=2,
140    rg=[15.8, 21],
141    power=[4, 2],
142    B=[4.5e-6, 0.0006],
143    G=[400, 3],
144    scale=1.,
145    background=0.,
146)
Note: See TracBrowser for help on using the repository browser.