source: sasmodels/sasmodels/models/triaxial_ellipsoid.py @ 9802ab3

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 9802ab3 was 9802ab3, checked in by richardh, 7 years ago

changes to docs, anticipating new orientation angle integrals

  • Property mode set to 100644
File size: 6.6 KB
Line 
1# triaxial ellipsoid model
2# Note: model title and parameter table are inserted automatically
3r"""
4Definition
5----------
6
7.. figure:: img/triaxial_ellipsoid_geometry.jpg
8
9    Ellipsoid with $R_a$ as *radius_equat_minor*, $R_b$ as *radius_equat_major*
10    and $R_c$ as *radius_polar*.
11
12Given an ellipsoid
13
14.. math::
15
16    \frac{X^2}{R_a^2} + \frac{Y^2}{R_b^2} + \frac{Z^2}{R_c^2} = 1
17
18the scattering for randomly oriented particles is defined by the average over
19all orientations $\Omega$ of:
20
21.. math::
22
23    P(q) = \text{scale}(\Delta\rho)^2\frac{V}{4 \pi}\int_\Omega\Phi^2(qr)\,d\Omega
24           + \text{background}
25
26where
27
28.. math::
29
30    \Phi(qr) &= 3 j_1(qr)/qr = 3 (\sin qr - qr \cos qr)/(qr)^3 \\
31    r^2 &= R_a^2e^2 + R_b^2f^2 + R_c^2g^2 \\
32    V &= \tfrac{4}{3} \pi R_a R_b R_c
33
34The $e$, $f$ and $g$ terms are the projections of the orientation vector on $X$,
35$Y$ and $Z$ respectively.  Keeping the orientation fixed at the canonical
36axes, we can integrate over the incident direction using polar angle
37$-\pi/2 \le \gamma \le \pi/2$ and equatorial angle $0 \le \phi \le 2\pi$
38(as defined in ref [1]),
39
40 .. math::
41
42     \langle\Phi^2\rangle = \int_0^{2\pi} \int_{-\pi/2}^{\pi/2} \Phi^2(qr)
43                                                \cos \gamma\,d\gamma d\phi
44
45with $e = \cos\gamma \sin\phi$, $f = \cos\gamma \cos\phi$ and $g = \sin\gamma$.
46A little algebra yields
47
48.. math::
49
50    r^2 = b^2(p_a \sin^2 \phi \cos^2 \gamma + 1 + p_c \sin^2 \gamma)
51
52for
53
54.. math::
55
56    p_a = \frac{a^2}{b^2} - 1 \text{ and } p_c = \frac{c^2}{b^2} - 1
57
58Due to symmetry, the ranges can be restricted to a single quadrant
59$0 \le \gamma \le \pi/2$ and $0 \le \phi \le \pi/2$, scaling the resulting
60integral by 8. The computation is done using the substitution $u = \sin\gamma$,
61$du = \cos\gamma\,d\gamma$, giving
62
63.. math::
64
65    \langle\Phi^2\rangle &= 8 \int_0^{\pi/2} \int_0^1 \Phi^2(qr) du d\phi \\
66    r^2 &= b^2(p_a \sin^2(\phi)(1 - u^2) + 1 + p_c u^2)
67
68To provide easy access to the orientation of the triaxial ellipsoid,
69we define the axis of the cylinder using the angles $\theta$, $\phi$
70and $\psi$. These angles are defined analogously to the elliptical_cylinder below
71
72.. figure:: img/elliptical_cylinder_angle_definition.png
73
74    Definition of angles for oriented triaxial ellipsoid, where radii shown
75    here are $a < b << c$ and angle $\Psi$ is a rotation around the axis
76    of the particle.
77
78For oriented ellipsoids the *theta*, *phi* and *psi* orientation parameters will appear when fitting 2D data,
79see the :ref:`elliptical-cylinder` model for further information.
80
81.. _triaxial-ellipsoid-angles:
82
83.. figure:: img/triaxial_ellipsoid_angle_projection.png
84
85    Some example angles for oriented ellipsoid.
86
87The radius-of-gyration for this system is  $R_g^2 = (R_a R_b R_c)^2/5$.
88
89The contrast $\Delta\rho$ is defined as SLD(ellipsoid) - SLD(solvent).  In the
90parameters, $R_a$ is the minor equatorial radius, $R_b$ is the major
91equatorial radius, and $R_c$ is the polar radius of the ellipsoid.
92
93NB: The 2nd virial coefficient of the triaxial solid ellipsoid is
94calculated based on the polar radius $R_p = R_c$ and equatorial
95radius $R_e = \sqrt{R_a R_b}$, and used as the effective radius for
96$S(q)$ when $P(q) \cdot S(q)$ is applied.
97
98Validation
99----------
100
101Validation of our code was done by comparing the output of the
1021D calculation to the angular average of the output of 2D calculation
103over all possible angles.
104
105
106References
107----------
108
109[1] Finnigan, J.A., Jacobs, D.J., 1971.
110*Light scattering by ellipsoidal particles in solution*,
111J. Phys. D: Appl. Phys. 4, 72-77. doi:10.1088/0022-3727/4/1/310
112
113Authorship and Verification
114----------------------------
115
116* **Author:** NIST IGOR/DANSE **Date:** pre 2010
117* **Last Modified by:** Paul Kienzle (improved calculation) **Date:** April 4, 2017
118* **Last Reviewed by:** Paul Kienzle & Richard Heenan **Date:**  April 4, 2017
119"""
120
121from numpy import inf, sin, cos, pi
122
123name = "triaxial_ellipsoid"
124title = "Ellipsoid of uniform scattering length density with three independent axes."
125
126description = """
127   Note - fitting ensure that the inequality ra<rb<rc is not
128   violated. Otherwise the calculation may not be correct.
129"""
130category = "shape:ellipsoid"
131
132#             ["name", "units", default, [lower, upper], "type","description"],
133parameters = [["sld", "1e-6/Ang^2", 4, [-inf, inf], "sld",
134               "Ellipsoid scattering length density"],
135              ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld",
136               "Solvent scattering length density"],
137              ["radius_equat_minor", "Ang", 20, [0, inf], "volume",
138               "Minor equatorial radius, Ra"],
139              ["radius_equat_major", "Ang", 400, [0, inf], "volume",
140               "Major equatorial radius, Rb"],
141              ["radius_polar", "Ang", 10, [0, inf], "volume",
142               "Polar radius, Rc"],
143              ["theta", "degrees", 60, [-360, 360], "orientation",
144               "polar axis to beam angle"],
145              ["phi", "degrees", 60, [-360, 360], "orientation",
146               "rotation about beam"],
147              ["psi", "degrees", 60, [-360, 360], "orientation",
148               "rotation about polar axis"],
149             ]
150
151source = ["lib/sas_3j1x_x.c", "lib/gauss76.c", "triaxial_ellipsoid.c"]
152
153def ER(radius_equat_minor, radius_equat_major, radius_polar):
154    """
155    Returns the effective radius used in the S*P calculation
156    """
157    import numpy as np
158    from .ellipsoid import ER as ellipsoid_ER
159
160    # now that radii can be in any size order, radii need sorting a,b,c
161    # where a~b and c is either much smaller or much larger
162    radii = np.vstack((radius_equat_major, radius_equat_minor, radius_polar))
163    radii = np.sort(radii, axis=0)
164    selector = (radii[1] - radii[0]) > (radii[2] - radii[1])
165    polar = np.where(selector, radii[0], radii[2])
166    equatorial = np.sqrt(np.where(~selector, radii[0]*radii[1], radii[1]*radii[2]))
167    return ellipsoid_ER(polar, equatorial)
168
169demo = dict(scale=1, background=0,
170            sld=6, sld_solvent=1,
171            theta=30, phi=15, psi=5,
172            radius_equat_minor=25, radius_equat_major=36, radius_polar=50,
173            radius_equat_minor_pd=0, radius_equat_minor_pd_n=1,
174            radius_equat_major_pd=0, radius_equat_major_pd_n=1,
175            radius_polar_pd=.2, radius_polar_pd_n=30,
176            theta_pd=15, theta_pd_n=45,
177            phi_pd=15, phi_pd_n=1,
178            psi_pd=15, psi_pd_n=1)
179
180q = 0.1
181# april 6 2017, rkh add unit tests
182#     NOT compared with any other calc method, assume correct!
183# add 2d test after pull #890
184qx = q*cos(pi/6.0)
185qy = q*sin(pi/6.0)
186tests = [[{}, 0.05, 24.8839548033],
187#        [{'theta':80., 'phi':10.}, (qx, qy), 9999. ],
188        ]
189del qx, qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.