source: sasmodels/sasmodels/models/triaxial_ellipsoid.py @ 3401a7a

core_shell_microgelscostrafo411magnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 3401a7a was 3401a7a, checked in by richardh, 7 years ago

two more docs fixes

  • Property mode set to 100644
File size: 6.6 KB
Line 
1# triaxial ellipsoid model
2# Note: model title and parameter table are inserted automatically
3r"""
4Definition
5----------
6
7.. figure:: img/triaxial_ellipsoid_geometry.jpg
8
9    Ellipsoid with $R_a$ as *radius_equat_minor*, $R_b$ as *radius_equat_major*
10    and $R_c$ as *radius_polar*.
11
12Given an ellipsoid
13
14.. math::
15
16    \frac{X^2}{R_a^2} + \frac{Y^2}{R_b^2} + \frac{Z^2}{R_c^2} = 1
17
18the scattering for randomly oriented particles is defined by the average over
19all orientations $\Omega$ of:
20
21.. math::
22
23    P(q) = \text{scale}(\Delta\rho)^2\frac{V}{4 \pi}\int_\Omega\Phi^2(qr)\,d\Omega
24           + \text{background}
25
26where
27
28.. math::
29
30    \Phi(qr) &= 3 j_1(qr)/qr = 3 (\sin qr - qr \cos qr)/(qr)^3 \\
31    r^2 &= R_a^2e^2 + R_b^2f^2 + R_c^2g^2 \\
32    V &= \tfrac{4}{3} \pi R_a R_b R_c
33
34The $e$, $f$ and $g$ terms are the projections of the orientation vector on $X$,
35$Y$ and $Z$ respectively.  Keeping the orientation fixed at the canonical
36axes, we can integrate over the incident direction using polar angle
37$-\pi/2 \le \gamma \le \pi/2$ and equatorial angle $0 \le \phi \le 2\pi$
38(as defined in ref [1]),
39
40 .. math::
41
42     \langle\Phi^2\rangle = \int_0^{2\pi} \int_{-\pi/2}^{\pi/2} \Phi^2(qr)
43                                                \cos \gamma\,d\gamma d\phi
44
45with $e = \cos\gamma \sin\phi$, $f = \cos\gamma \cos\phi$ and $g = \sin\gamma$.
46A little algebra yields
47
48.. math::
49
50    r^2 = b^2(p_a \sin^2 \phi \cos^2 \gamma + 1 + p_c \sin^2 \gamma)
51
52for
53
54.. math::
55
56    p_a = \frac{a^2}{b^2} - 1 \text{ and } p_c = \frac{c^2}{b^2} - 1
57
58Due to symmetry, the ranges can be restricted to a single quadrant
59$0 \le \gamma \le \pi/2$ and $0 \le \phi \le \pi/2$, scaling the resulting
60integral by 8. The computation is done using the substitution $u = \sin\gamma$,
61$du = \cos\gamma\,d\gamma$, giving
62
63.. math::
64
65    \langle\Phi^2\rangle &= 8 \int_0^{\pi/2} \int_0^1 \Phi^2(qr) du d\phi \\
66    r^2 &= b^2(p_a \sin^2(\phi)(1 - u^2) + 1 + p_c u^2)
67
68To provide easy access to the orientation of the triaxial ellipsoid,
69we define the axis of the cylinder using the angles $\theta$, $\phi$
70and $\psi$. These angles are defined analogously to the elliptical_cylinder below
71
72.. figure:: img/elliptical_cylinder_angle_definition.png
73
74    Definition of angles for oriented triaxial ellipsoid, where radii shown
75    here are $a < b << c$ and angle $\Psi$ is a rotation around the axis
76    of the particle.
77
78The angle $\psi$ is the rotational angle around its own $c$ axis
79against the $q$ plane. For example, $\psi = 0$ when the
80$a$ axis is parallel to the $x$ axis of the detector.
81
82.. _triaxial-ellipsoid-angles:
83
84.. figure:: img/triaxial_ellipsoid_angle_projection.png
85
86    Some example angles for oriented ellipsoid.
87
88The radius-of-gyration for this system is  $R_g^2 = (R_a R_b R_c)^2/5$.
89
90The contrast $\Delta\rho$ is defined as SLD(ellipsoid) - SLD(solvent).  In the
91parameters, $R_a$ is the minor equatorial radius, $R_b$ is the major
92equatorial radius, and $R_c$ is the polar radius of the ellipsoid.
93
94NB: The 2nd virial coefficient of the triaxial solid ellipsoid is
95calculated based on the polar radius $R_p = R_c$ and equatorial
96radius $R_e = \sqrt{R_a R_b}$, and used as the effective radius for
97$S(q)$ when $P(q) \cdot S(q)$ is applied.
98
99Validation
100----------
101
102Validation of our code was done by comparing the output of the
1031D calculation to the angular average of the output of 2D calculation
104over all possible angles.
105
106
107References
108----------
109
110[1] Finnigan, J.A., Jacobs, D.J., 1971.
111*Light scattering by ellipsoidal particles in solution*,
112J. Phys. D: Appl. Phys. 4, 72-77. doi:10.1088/0022-3727/4/1/310
113
114Authorship and Verification
115----------------------------
116
117* **Author:** NIST IGOR/DANSE **Date:** pre 2010
118* **Last Modified by:** Paul Kienzle (improved calculation) **Date:** April 4, 2017
119* **Last Reviewed by:** Paul Kienzle & Richard Heenan **Date:**  April 4, 2017
120"""
121
122from numpy import inf, sin, cos, pi
123
124name = "triaxial_ellipsoid"
125title = "Ellipsoid of uniform scattering length density with three independent axes."
126
127description = """
128   Note - fitting ensure that the inequality ra<rb<rc is not
129   violated. Otherwise the calculation may not be correct.
130"""
131category = "shape:ellipsoid"
132
133#             ["name", "units", default, [lower, upper], "type","description"],
134parameters = [["sld", "1e-6/Ang^2", 4, [-inf, inf], "sld",
135               "Ellipsoid scattering length density"],
136              ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld",
137               "Solvent scattering length density"],
138              ["radius_equat_minor", "Ang", 20, [0, inf], "volume",
139               "Minor equatorial radius, Ra"],
140              ["radius_equat_major", "Ang", 400, [0, inf], "volume",
141               "Major equatorial radius, Rb"],
142              ["radius_polar", "Ang", 10, [0, inf], "volume",
143               "Polar radius, Rc"],
144              ["theta", "degrees", 60, [-360, 360], "orientation",
145               "polar axis to beam angle"],
146              ["phi", "degrees", 60, [-360, 360], "orientation",
147               "rotation about beam"],
148              ["psi", "degrees", 60, [-360, 360], "orientation",
149               "rotation about polar axis"],
150             ]
151
152source = ["lib/sas_3j1x_x.c", "lib/gauss76.c", "triaxial_ellipsoid.c"]
153
154def ER(radius_equat_minor, radius_equat_major, radius_polar):
155    """
156    Returns the effective radius used in the S*P calculation
157    """
158    import numpy as np
159    from .ellipsoid import ER as ellipsoid_ER
160
161    # now that radii can be in any size order, radii need sorting a,b,c
162    # where a~b and c is either much smaller or much larger
163    radii = np.vstack((radius_equat_major, radius_equat_minor, radius_polar))
164    radii = np.sort(radii, axis=0)
165    selector = (radii[1] - radii[0]) > (radii[2] - radii[1])
166    polar = np.where(selector, radii[0], radii[2])
167    equatorial = np.sqrt(np.where(~selector, radii[0]*radii[1], radii[1]*radii[2]))
168    return ellipsoid_ER(polar, equatorial)
169
170demo = dict(scale=1, background=0,
171            sld=6, sld_solvent=1,
172            theta=30, phi=15, psi=5,
173            radius_equat_minor=25, radius_equat_major=36, radius_polar=50,
174            radius_equat_minor_pd=0, radius_equat_minor_pd_n=1,
175            radius_equat_major_pd=0, radius_equat_major_pd_n=1,
176            radius_polar_pd=.2, radius_polar_pd_n=30,
177            theta_pd=15, theta_pd_n=45,
178            phi_pd=15, phi_pd_n=1,
179            psi_pd=15, psi_pd_n=1)
180
181q = 0.1
182# april 6 2017, rkh add unit tests
183#     NOT compared with any other calc method, assume correct!
184# add 2d test after pull #890
185qx = q*cos(pi/6.0)
186qy = q*sin(pi/6.0)
187tests = [[{}, 0.05, 24.8839548033],
188#        [{'theta':80., 'phi':10.}, (qx, qy), 9999. ],
189        ]
190del qx, qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.