r""" Definition ---------- This model calculates the scattered intensity of a two-component system using the Teubner-Strey model. Unlike :ref:`dab` this function generates a peak. A two-phase material can be characterised by two length scales - a correlation length and a domain size (periodicity). The original paper by Teubner and Strey defined the function as: .. math:: I(q) \propto \frac{1}{a_2 + c_1 q^2 + c_2 q^4} + \text{background} where the parameters $a_2$, $c_1$ and $c_2$ are defined in terms of the periodicity, $d$, and correlation length $\xi$ as: .. math:: a_2 &= \biggl[1+\bigl(\frac{2\pi\xi}{d}\bigr)^2\biggr]^2\\ c_1 &= -2\xi^2\bigl(\frac{2\pi\xi}{d}\bigr)^2+2\xi^2\\ c_2 &= \xi^4 and thus, the periodicity, $d$ is given by .. math:: d = 2\pi\left[\frac12\left(\frac{a_2}{c_2}\right)^{1/2} - \frac14\frac{c_1}{c_2}\right]^{-1/2} and the correlation length, $\xi$, is given by .. math:: \xi = \left[\frac12\left(\frac{a_2}{c_2}\right)^{1/2} + \frac14\frac{c_1}{c_2}\right]^{-1/2} Here the model is parameterised in terms of $d$ and $\xi$ and with an explicit volume fraction for one phase, $\phi_a$, and contrast, $\delta\rho^2 = (\rho_a - \rho_b)^2$ : .. math:: I(q) = \frac{8\pi\phi_a(1-\phi_a)(\Delta\rho)^2c_2/\xi} {a_2 + c_1q^2 + c_2q^4} where :math:`8\pi\phi_a(1-\phi_a)(\Delta\rho)^2c_2/\xi` is the constant of proportionality from the first equation above. In the case of a microemulsion, $a_2 > 0$, $c_1 < 0$, and $c_2 >0$. For 2D data, scattering intensity is calculated in the same way as 1D, where the $q$ vector is defined as .. math:: q = \sqrt{q_x^2 + q_y^2} References ---------- .. [#] M Teubner, R Strey, *J. Chem. Phys.*, 87 (1987) 3195 .. [#] K V Schubert, R Strey, S R Kline and E W Kaler, *J. Chem. Phys.*, 101 (1994) 5343 .. [#] H Endo, M Mihailescu, M. Monkenbusch, J Allgaier, G Gompper, D Richter, B Jakobs, T Sottmann, R Strey, and I Grillo, *J. Chem. Phys.*, 115 (2001), 580 Source ------ `teubner_strey.py `_ `teubner_strey.c `_ Authorship and Verification ---------------------------- * **Author:** * **Last Modified by:** * **Last Reviewed by:** * **Source added by :** Steve King **Date:** March 25, 2019 """ from __future__ import division import numpy as np from numpy import inf, pi name = "teubner_strey" title = "Teubner-Strey model of microemulsions" description = """\ Calculates scattering according to the Teubner-Strey model """ category = "shape-independent" # ["name", "units", default, [lower, upper], "type","description"], parameters = [ ["volfraction_a", "", 0.5, [0, 1.0], "", "Volume fraction of phase a"], ["sld_a", "1e-6/Ang^2", 0.3, [-inf, inf], "", "SLD of phase a"], ["sld_b", "1e-6/Ang^2", 6.3, [-inf, inf], "", "SLD of phase b"], ["d", "Ang", 100.0, [0, inf], "", "Domain size (periodicity)"], ["xi", "Ang", 30.0, [0, inf], "", "Correlation length"], ] def Iq(q, volfraction_a, sld_a, sld_b, d, xi): """SAS form""" drho = sld_a - sld_b k = 2.0*pi*xi/d a2 = (1.0 + k**2)**2 c1 = 2.0*xi**2 * (1.0 - k**2) c2 = xi**4 prefactor = 8.0*pi * volfraction_a*(1.0 - volfraction_a) * drho**2 * c2/xi return 1.0e-4*prefactor / np.polyval([c2, c1, a2], q**2) Iq.vectorized = True # Iq accepts an array of q values def random(): """Return a random parameter set for the model.""" d = 10**np.random.uniform(1, 4) xi = 10**np.random.uniform(-0.3, 2)*d pars = dict( #background=0, scale=100, volfraction_a=10**np.random.uniform(-3, 0), sld_a=np.random.uniform(-0.5, 12), sld_b=np.random.uniform(-0.5, 12), d=d, xi=xi, ) return pars demo = dict(scale=1, background=0, volfraction_a=0.5, sld_a=0.3, sld_b=6.3, d=100.0, xi=30.0) tests = [[{}, 0.06, 41.5918888453]]