r""" Definition ---------- This model calculates the SAS signal of a phase separating system undergoing spinodal decomposition. The scattering intensity $I(q)$ is calculated as .. math:: I(q) = I_{max}\frac{(1+\gamma/2)x^2}{\gamma/2+x^{2+\gamma}}+B where $x=q/q_0$, $q_0$ is the peak position, $I_{max}$ is the intensity at $q_0$ (parameterised as the $scale$ parameter), and $B$ is a flat background. The spinodal wavelength, $\Lambda$, is given by $2\pi/q_0$. The definition of $I_{max}$ in the literature varies. Hashimoto *et al* (1991) define it as .. math:: I_{max} = \Lambda^3\Delta\rho^2 whereas Meier & Strobl (1987) give .. math:: I_{max} = V_z\Delta\rho^2 where $V_z$ is the volume per monomer unit. The exponent $\gamma$ is equal to $d+1$ for off-critical concentration mixtures (smooth interfaces) and $2d$ for critical concentration mixtures (entangled interfaces), where $d$ is the dimensionality (ie, 1, 2, 3) of the system. Thus 2 <= $\gamma$ <= 6. A transition from $\gamma=d+1$ to $\gamma=2d$ is expected near the percolation threshold. As this function tends to zero as $q$ tends to zero, in practice it may be necessary to combine it with another function describing the low-angle scattering, or to simply omit the low-angle scattering from the fit. References ---------- H. Furukawa. Dynamics-scaling theory for phase-separating unmixing mixtures: Growth rates of droplets and scaling properties of autocorrelation functions. Physica A 123, 497 (1984). H. Meier & G. Strobl. Small-Angle X-ray Scattering Study of Spinodal Decomposition in Polystyrene/Poly(styrene-co-bromostyrene) Blends. Macromolecules 20, 649-654 (1987). T. Hashimoto, M. Takenaka & H. Jinnai. Scattering Studies of Self-Assembling Processes of Polymer Blends in Spinodal Decomposition. J. Appl. Cryst. 24, 457-466 (1991). Revision History ---------------- * **Author:** Dirk Honecker **Date:** Oct 7, 2016 * **Revised:** Steve King **Date:** Oct 25, 2018 """ import numpy as np from numpy import inf, errstate name = "spinodal" title = "Spinodal decomposition model" description = """\ I(q) = Imax ((1+gamma/2)x^2)/(gamma/2+x^(2+gamma)) + background List of default parameters: Imax = correlation peak intensity at q_0 background = incoherent background gamma = exponent (see model documentation) q_0 = correlation peak position [1/A] x = q/q_0""" category = "shape-independent" # pylint: disable=bad-whitespace, line-too-long # ["name", "units", default, [lower, upper], "type", "description"], parameters = [["gamma", "", 3.0, [-inf, inf], "", "Exponent"], ["q_0", "1/Ang", 0.1, [-inf, inf], "", "Correlation peak position"] ] # pylint: enable=bad-whitespace, line-too-long def Iq(q, gamma=3.0, q_0=0.1): """ :param q: Input q-value :param gamma: Exponent :param q_0: Correlation peak position :return: Calculated intensity """ with errstate(divide='ignore'): x = q/q_0 inten = ((1 + gamma / 2) * x ** 2) / (gamma / 2 + x ** (2 + gamma)) return inten Iq.vectorized = True # Iq accepts an array of q values def random(): pars = dict( scale=10**np.random.uniform(1, 3), gamma=np.random.uniform(0, 6), q_0=10**np.random.uniform(-3, -1), ) return pars demo = dict(scale=1, background=0, gamma=1, q_0=0.1)