1 | r""" |
---|
2 | Definition |
---|
3 | ---------- |
---|
4 | |
---|
5 | Similarly to the onion, this model provides the form factor, $P(q)$, for |
---|
6 | a multi-shell sphere, where the interface between the each neighboring |
---|
7 | shells can be described by the error function, power-law, or exponential |
---|
8 | functions. The scattering intensity is computed by building a continuous |
---|
9 | custom SLD profile along the radius of the particle. The SLD profile is |
---|
10 | composed of a number of uniform shells with interfacial shells between them. |
---|
11 | |
---|
12 | .. figure:: img/spherical_sld_profile.png |
---|
13 | |
---|
14 | Example SLD profile |
---|
15 | |
---|
16 | Unlike the :ref:`onion` model (using an analytical integration), the interfacial |
---|
17 | shells here are sub-divided and numerically integrated assuming each |
---|
18 | sub-shell is described by a line function, with *n_steps* sub-shells per |
---|
19 | interface. The form factor is normalized by the total volume of the sphere. |
---|
20 | |
---|
21 | .. note:: |
---|
22 | |
---|
23 | *n_shells* must be an integer. *n_steps* must be an ODD integer. |
---|
24 | |
---|
25 | Interface shapes are as follows: |
---|
26 | |
---|
27 | 0: erf($\nu z$) |
---|
28 | |
---|
29 | 1: Rpow($z^\nu$) |
---|
30 | |
---|
31 | 2: Lpow($z^\nu$) |
---|
32 | |
---|
33 | 3: Rexp($-\nu z$) |
---|
34 | |
---|
35 | 4: Lexp($-\nu z$) |
---|
36 | |
---|
37 | The form factor $P(q)$ in 1D is calculated by: |
---|
38 | |
---|
39 | .. math:: |
---|
40 | |
---|
41 | P(q) = \frac{f^2}{V_\text{particle}} \text{ where } |
---|
42 | f = f_\text{core} + \sum_{\text{inter}_i=0}^N f_{\text{inter}_i} + |
---|
43 | \sum_{\text{flat}_i=0}^N f_{\text{flat}_i} +f_\text{solvent} |
---|
44 | |
---|
45 | For a spherically symmetric particle with a particle density $\rho_x(r)$ |
---|
46 | the sld function can be defined as: |
---|
47 | |
---|
48 | .. math:: |
---|
49 | |
---|
50 | f_x = 4 \pi \int_{0}^{\infty} \rho_x(r) \frac{\sin(qr)} {qr^2} r^2 dr |
---|
51 | |
---|
52 | |
---|
53 | so that individual terms can be calculated as follows: |
---|
54 | |
---|
55 | .. math:: |
---|
56 | |
---|
57 | f_\text{core} &= 4 \pi \int_{0}^{r_\text{core}} \rho_\text{core} |
---|
58 | \frac{\sin(qr)} {qr} r^2 dr = |
---|
59 | 3 \rho_\text{core} V(r_\text{core}) |
---|
60 | \Big[ \frac{\sin(qr_\text{core}) - qr_\text{core} \cos(qr_\text{core})} |
---|
61 | {qr_\text{core}^3} \Big] \\ |
---|
62 | f_{\text{inter}_i} &= 4 \pi \int_{\Delta t_{ \text{inter}_i } } |
---|
63 | \rho_{ \text{inter}_i } \frac{\sin(qr)} {qr} r^2 dr \\ |
---|
64 | f_{\text{shell}_i} &= 4 \pi \int_{\Delta t_{ \text{inter}_i } } |
---|
65 | \rho_{ \text{flat}_i } \frac{\sin(qr)} {qr} r^2 dr = |
---|
66 | 3 \rho_{ \text{flat}_i } V ( r_{ \text{inter}_i } + |
---|
67 | \Delta t_{ \text{inter}_i } ) |
---|
68 | \Big[ \frac{\sin(qr_{\text{inter}_i} + \Delta t_{ \text{inter}_i } ) |
---|
69 | - q (r_{\text{inter}_i} + \Delta t_{ \text{inter}_i }) |
---|
70 | \cos(q( r_{\text{inter}_i} + \Delta t_{ \text{inter}_i } ) ) } |
---|
71 | {q ( r_{\text{inter}_i} + \Delta t_{ \text{inter}_i } )^3 } \Big] |
---|
72 | -3 \rho_{ \text{flat}_i } V(r_{ \text{inter}_i }) |
---|
73 | \Big[ \frac{\sin(qr_{\text{inter}_i}) - qr_{\text{flat}_i} |
---|
74 | \cos(qr_{\text{inter}_i}) } {qr_{\text{inter}_i}^3} \Big] \\ |
---|
75 | f_\text{solvent} &= 4 \pi \int_{r_N}^{\infty} \rho_\text{solvent} |
---|
76 | \frac{\sin(qr)} {qr} r^2 dr = |
---|
77 | 3 \rho_\text{solvent} V(r_N) |
---|
78 | \Big[ \frac{\sin(qr_N) - qr_N \cos(qr_N)} {qr_N^3} \Big] |
---|
79 | |
---|
80 | Here we assumed that the SLDs of the core and solvent are constant in $r$. |
---|
81 | The SLD at the interface between shells, $\rho_{\text {inter}_i}$ |
---|
82 | is calculated with a function chosen by an user, where the functions are |
---|
83 | |
---|
84 | Exp: |
---|
85 | |
---|
86 | .. math:: |
---|
87 | |
---|
88 | \rho_{{inter}_i} (r) &= \begin{cases} |
---|
89 | B \exp\Big( \frac {\pm A(r - r_{\text{flat}_i})} |
---|
90 | {\Delta t_{ \text{inter}_i }} \Big) +C & \mbox{for } A \neq 0 \\ |
---|
91 | B \Big( \frac {(r - r_{\text{flat}_i})} |
---|
92 | {\Delta t_{ \text{inter}_i }} \Big) +C & \mbox{for } A = 0 \\ |
---|
93 | \end{cases} |
---|
94 | |
---|
95 | Power-Law: |
---|
96 | |
---|
97 | .. math:: |
---|
98 | |
---|
99 | \rho_{{inter}_i} (r) &= \begin{cases} |
---|
100 | \pm B \Big( \frac {(r - r_{\text{flat}_i} )} {\Delta t_{ \text{inter}_i }} |
---|
101 | \Big) ^A +C & \mbox{for } A \neq 0 \\ |
---|
102 | \rho_{\text{flat}_{i+1}} & \mbox{for } A = 0 \\ |
---|
103 | \end{cases} |
---|
104 | |
---|
105 | Erf: |
---|
106 | |
---|
107 | .. math:: |
---|
108 | |
---|
109 | \rho_{{inter}_i} (r) = \begin{cases} |
---|
110 | B \text{erf} \Big( \frac { A(r - r_{\text{flat}_i})} |
---|
111 | {\sqrt{2} \Delta t_{ \text{inter}_i }} \Big) +C & \mbox{for } A \neq 0 \\ |
---|
112 | B \Big( \frac {(r - r_{\text{flat}_i} )} {\Delta t_{ \text{inter}_i }} |
---|
113 | \Big) +C & \mbox{for } A = 0 \\ |
---|
114 | \end{cases} |
---|
115 | |
---|
116 | The functions are normalized so that they vary between 0 and 1, and they are |
---|
117 | constrained such that the SLD is continuous at the boundaries of the interface |
---|
118 | as well as each sub-shell. Thus B and C are determined. |
---|
119 | |
---|
120 | Once $\rho_{\text{inter}_i}$ is found at the boundary of the sub-shell of the |
---|
121 | interface, we can find its contribution to the form factor $P(q)$ |
---|
122 | |
---|
123 | .. math:: |
---|
124 | |
---|
125 | f_{\text{inter}_i} &= 4 \pi \int_{\Delta t_{ \text{inter}_i } } |
---|
126 | \rho_{ \text{inter}_i } \frac{\sin(qr)} {qr} r^2 dr = |
---|
127 | 4 \pi \sum_{j=1}^{n_\text{steps}} |
---|
128 | \int_{r_j}^{r_{j+1}} \rho_{ \text{inter}_i } (r_j) |
---|
129 | \frac{\sin(qr)} {qr} r^2 dr \\ |
---|
130 | \approx 4 \pi \sum_{j=1}^{n_\text{steps}} \Big[ |
---|
131 | 3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } |
---|
132 | ( r_{j} ) V (r_j) |
---|
133 | \Big[ \frac {r_j^2 \beta_\text{out}^2 \sin(\beta_\text{out}) |
---|
134 | - (\beta_\text{out}^2-2) \cos(\beta_\text{out}) } |
---|
135 | {\beta_\text{out}^4 } \Big] \\ |
---|
136 | {} - 3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } |
---|
137 | ( r_{j} ) V ( r_{j-1} ) |
---|
138 | \Big[ \frac {r_{j-1}^2 \sin(\beta_\text{in}) |
---|
139 | - (\beta_\text{in}^2-2) \cos(\beta_\text{in}) } |
---|
140 | {\beta_\text{in}^4 } \Big] \\ |
---|
141 | {} + 3 \rho_{ \text{inter}_i } ( r_{j+1} ) V ( r_j ) |
---|
142 | \Big[ \frac {\sin(\beta_\text{out}) - \cos(\beta_\text{out}) } |
---|
143 | {\beta_\text{out}^4 } \Big] |
---|
144 | - 3 \rho_{ \text{inter}_i } ( r_{j} ) V ( r_j ) |
---|
145 | \Big[ \frac {\sin(\beta_\text{in}) - \cos(\beta_\text{in}) } |
---|
146 | {\beta_\text{in}^4 } \Big] |
---|
147 | \Big] |
---|
148 | |
---|
149 | where |
---|
150 | |
---|
151 | .. math:: |
---|
152 | :nowrap: |
---|
153 | |
---|
154 | \begin{align*} |
---|
155 | V(a) &= \frac {4\pi}{3}a^3 && \\ |
---|
156 | a_\text{in} \sim \frac{r_j}{r_{j+1} -r_j} \text{, } & a_\text{out} |
---|
157 | \sim \frac{r_{j+1}}{r_{j+1} -r_j} \\ |
---|
158 | \beta_\text{in} &= qr_j \text{, } & \beta_\text{out} &= qr_{j+1} |
---|
159 | \end{align*} |
---|
160 | |
---|
161 | We assume $\rho_{\text{inter}_j} (r)$ is approximately linear |
---|
162 | within the sub-shell $j$. |
---|
163 | |
---|
164 | Finally the form factor can be calculated by |
---|
165 | |
---|
166 | .. math:: |
---|
167 | |
---|
168 | P(q) = \frac{[f]^2} {V_\text{particle}} \mbox{ where } V_\text{particle} |
---|
169 | = V(r_{\text{shell}_N}) |
---|
170 | |
---|
171 | For 2D data the scattering intensity is calculated in the same way as 1D, |
---|
172 | where the $q$ vector is defined as |
---|
173 | |
---|
174 | .. math:: |
---|
175 | |
---|
176 | q = \sqrt{q_x^2 + q_y^2} |
---|
177 | |
---|
178 | .. note:: |
---|
179 | |
---|
180 | The outer most radius is used as the effective radius for $S(Q)$ |
---|
181 | when $P(Q) * S(Q)$ is applied. |
---|
182 | |
---|
183 | References |
---|
184 | ---------- |
---|
185 | |
---|
186 | .. [#] L A Feigin and D I Svergun, Structure Analysis by Small-Angle X-Ray |
---|
187 | and Neutron Scattering, Plenum Press, New York, (1987) |
---|
188 | |
---|
189 | Source |
---|
190 | ------ |
---|
191 | |
---|
192 | `spherical_sld.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/spherical_sld.py>`_ |
---|
193 | |
---|
194 | `spherical_sld.c <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/spherical_sld.c>`_ |
---|
195 | |
---|
196 | Authorship and Verification |
---|
197 | --------------------------- |
---|
198 | |
---|
199 | * **Author:** Jae-Hie Cho **Date:** Nov 1, 2010 |
---|
200 | * **Last Modified by:** Paul Kienzle **Date:** Dec 20, 2016 |
---|
201 | * **Last Reviewed by:** Steve King **Date:** March 29, 2019 |
---|
202 | * **Source added by :** Steve King **Date:** March 25, 2019 |
---|
203 | """ |
---|
204 | |
---|
205 | import numpy as np |
---|
206 | from numpy import inf, expm1, sqrt |
---|
207 | from scipy.special import erf |
---|
208 | |
---|
209 | name = "spherical_sld" |
---|
210 | title = "Spherical SLD intensity calculation" |
---|
211 | description = """ |
---|
212 | I(q) = |
---|
213 | background = Incoherent background [1/cm] |
---|
214 | """ |
---|
215 | category = "shape:sphere" |
---|
216 | |
---|
217 | SHAPES = ["erf(|nu|*z)", "Rpow(z^|nu|)", "Lpow(z^|nu|)", |
---|
218 | "Rexp(-|nu|z)", "Lexp(-|nu|z)"] |
---|
219 | |
---|
220 | # pylint: disable=bad-whitespace, line-too-long |
---|
221 | # ["name", "units", default, [lower, upper], "type", "description"], |
---|
222 | parameters = [["n_shells", "", 1, [1, 10], "volume", "number of shells (must be integer)"], |
---|
223 | ["sld_solvent", "1e-6/Ang^2", 1.0, [-inf, inf], "sld", "solvent sld"], |
---|
224 | ["sld[n_shells]", "1e-6/Ang^2", 4.06, [-inf, inf], "sld", "sld of the shell"], |
---|
225 | ["thickness[n_shells]", "Ang", 100.0, [0, inf], "volume", "thickness shell"], |
---|
226 | ["interface[n_shells]", "Ang", 50.0, [0, inf], "volume", "thickness of the interface"], |
---|
227 | ["shape[n_shells]", "", 0, [SHAPES], "", "interface shape"], |
---|
228 | ["nu[n_shells]", "", 2.5, [1, inf], "", "interface shape exponent"], |
---|
229 | ["n_steps", "", 35, [0, inf], "", "number of steps in each interface (must be an odd integer)"], |
---|
230 | ] |
---|
231 | # pylint: enable=bad-whitespace, line-too-long |
---|
232 | source = ["lib/polevl.c", "lib/sas_erf.c", "lib/sas_3j1x_x.c", "spherical_sld.c"] |
---|
233 | single = False # TODO: fix low q behaviour |
---|
234 | have_Fq = True |
---|
235 | radius_effective_modes = ["outer radius"] |
---|
236 | |
---|
237 | profile_axes = ['Radius (A)', 'SLD (1e-6/A^2)'] |
---|
238 | |
---|
239 | SHAPE_FUNCTIONS = [ |
---|
240 | lambda z, nu: erf(nu/sqrt(2)*(2*z-1))/(2*erf(nu/sqrt(2))) + 0.5, # erf |
---|
241 | lambda z, nu: z**nu, # Rpow |
---|
242 | lambda z, nu: 1 - (1-z)**nu, # Lpow |
---|
243 | lambda z, nu: expm1(-nu*z)/expm1(-nu), # Rexp |
---|
244 | lambda z, nu: expm1(nu*z)/expm1(nu), # Lexp |
---|
245 | ] |
---|
246 | |
---|
247 | def profile(n_shells, sld_solvent, sld, thickness, |
---|
248 | interface, shape, nu, n_steps): |
---|
249 | """ |
---|
250 | Returns shape profile with x=radius, y=SLD. |
---|
251 | """ |
---|
252 | |
---|
253 | n_shells = int(n_shells + 0.5) |
---|
254 | n_steps = int(n_steps + 0.5) |
---|
255 | z = [] |
---|
256 | rho = [] |
---|
257 | z_next = 0 |
---|
258 | # two sld points for core |
---|
259 | z.append(z_next) |
---|
260 | rho.append(sld[0]) |
---|
261 | |
---|
262 | for i in range(0, n_shells): |
---|
263 | z_next += thickness[i] |
---|
264 | z.append(z_next) |
---|
265 | rho.append(sld[i]) |
---|
266 | dz = interface[i]/n_steps |
---|
267 | sld_l = sld[i] |
---|
268 | sld_r = sld[i+1] if i < n_shells-1 else sld_solvent |
---|
269 | fun = SHAPE_FUNCTIONS[int(np.clip(shape[i], 0, len(SHAPE_FUNCTIONS)-1))] |
---|
270 | for step in range(1, n_steps+1): |
---|
271 | portion = fun(float(step)/n_steps, max(abs(nu[i]), 1e-14)) |
---|
272 | z_next += dz |
---|
273 | z.append(z_next) |
---|
274 | rho.append((sld_r - sld_l)*portion + sld_l) |
---|
275 | z.append(z_next*1.2) |
---|
276 | rho.append(sld_solvent) |
---|
277 | # return sld profile (r, beta) |
---|
278 | return np.asarray(z), np.asarray(rho) |
---|
279 | |
---|
280 | # TODO: no random parameter generator for spherical SLD. |
---|
281 | |
---|
282 | demo = { |
---|
283 | "n_shells": 5, |
---|
284 | "n_steps": 35.0, |
---|
285 | "sld_solvent": 1.0, |
---|
286 | "sld": [2.07, 4.0, 3.5, 4.0, 3.5], |
---|
287 | "thickness": [50.0, 100.0, 100.0, 100.0, 100.0], |
---|
288 | "interface": [50.0]*5, |
---|
289 | "shape": [0]*5, |
---|
290 | "nu": [2.5]*5, |
---|
291 | } |
---|
292 | |
---|
293 | tests = [ |
---|
294 | # Results checked against sasview 3.1 |
---|
295 | [{"n_shells": 5, |
---|
296 | "n_steps": 35, |
---|
297 | "sld_solvent": 1.0, |
---|
298 | "sld": [2.07, 4.0, 3.5, 4.0, 3.5], |
---|
299 | "thickness": [50.0, 100.0, 100.0, 100.0, 100.0], |
---|
300 | "interface": [50]*5, |
---|
301 | "shape": [0]*5, |
---|
302 | "nu": [2.5]*5, |
---|
303 | }, 0.001, 750697.238], |
---|
304 | ] |
---|