r""" This model calculates an empirical functional form for SAS data using SpericalSLD profile Similarly to the OnionExpShellModel, this model provides the form factor, P(q), for a multi-shell sphere, where the interface between the each neighboring shells can be described by one of a number of functions including error, power-law, and exponential functions. This model is to calculate the scattering intensity by building a continuous custom SLD profile against the radius of the particle. The SLD profile is composed of a flat core, a flat solvent, a number (up to 9 ) flat shells, and the interfacial layers between the adjacent flat shells (or core, and solvent) (see below). .. figure:: img/spherical_sld_profile.gif Exemplary SLD profile Unlike the model (using an analytical integration), the interfacial layers here are sub-divided and numerically integrated assuming each of the sub-layers are described by a line function. The number of the sub-layer can be given by users by setting the integer values of npts_inter. The form factor is normalized by the total volume of the sphere. Definition ---------- The form factor $P(q)$ in 1D is calculated by: .. math:: P(q) = \frac{f^2}{V_\text{particle}} \text{ where } f = f_\text{core} + \sum_{\text{inter}_i=0}^N f_{\text{inter}_i} + \sum_{\text{flat}_i=0}^N f_{\text{flat}_i} +f_\text{solvent} For a spherically symmetric particle with a particle density $\rho_x(r)$ the sld function can be defined as: .. math:: f_x = 4 \pi \int_{0}^{\infty} \rho_x(r) \frac{\sin(qr)} {qr^2} r^2 dr so that individual terms can be calcualted as follows: .. math:: f_\text{core} = 4 \pi \int_{0}^{r_\text{core}} \rho_\text{core} \frac{\sin(qr)} {qr} r^2 dr = 3 \rho_\text{core} V(r_\text{core}) \Big[ \frac{\sin(qr_\text{core}) - qr_\text{core} \cos(qr_\text{core})} {qr_\text{core}^3} \Big] f_{\text{inter}_i} = 4 \pi \int_{\Delta t_{ \text{inter}_i } } \rho_{ \text{inter}_i } \frac{\sin(qr)} {qr} r^2 dr f_{\text{shell}_i} = 4 \pi \int_{\Delta t_{ \text{inter}_i } } \rho_{ \text{flat}_i } \frac{\sin(qr)} {qr} r^2 dr = 3 \rho_{ \text{flat}_i } V ( r_{ \text{inter}_i } + \Delta t_{ \text{inter}_i } ) \Big[ \frac{\sin(qr_{\text{inter}_i} + \Delta t_{ \text{inter}_i } ) - q (r_{\text{inter}_i} + \Delta t_{ \text{inter}_i }) \cos(q( r_{\text{inter}_i} + \Delta t_{ \text{inter}_i } ) ) } {q ( r_{\text{inter}_i} + \Delta t_{ \text{inter}_i } )^3 } \Big] -3 \rho_{ \text{flat}_i } V(r_{ \text{inter}_i }) \Big[ \frac{\sin(qr_{\text{inter}_i}) - qr_{\text{flat}_i} \cos(qr_{\text{inter}_i}) } {qr_{\text{inter}_i}^3} \Big] f_\text{solvent} = 4 \pi \int_{r_N}^{\infty} \rho_\text{solvent} \frac{\sin(qr)} {qr} r^2 dr = 3 \rho_\text{solvent} V(r_N) \Big[ \frac{\sin(qr_N) - qr_N \cos(qr_N)} {qr_N^3} \Big] Here we assumed that the SLDs of the core and solvent are constant against $r$. The SLD at the interface between shells, $\rho_{\text {inter}_i}$ is calculated with a function chosen by an user, where the functions are Exp: .. math:: \rho_{{inter}_i} (r) = \begin{cases} B \exp\Big( \frac {\pm A(r - r_{\text{flat}_i})} {\Delta t_{ \text{inter}_i }} \Big) +C & \text{for} A \neq 0 \\ B \Big( \frac {(r - r_{\text{flat}_i})} {\Delta t_{ \text{inter}_i }} \Big) +C & \text{for} A = 0 \\ \end{cases} Power-Law .. math:: \rho_{{inter}_i} (r) = \begin{cases} \pm B \Big( \frac {(r - r_{\text{flat}_i} )} {\Delta t_{ \text{inter}_i }} \Big) ^A +C & \text{for} A \neq 0 \\ \rho_{\text{flat}_{i+1}} & \text{for} A = 0 \\ \end{cases} Erf: .. math:: \rho_{{inter}_i} (r) = \begin{cases} B \text{erf} \Big( \frac { A(r - r_{\text{flat}_i})} {\sqrt{2} \Delta t_{ \text{inter}_i }} \Big) +C & \text{for} A \neq 0 \\ B \Big( \frac {(r - r_{\text{flat}_i} )} {\Delta t_{ \text{inter}_i }} \Big) +C & \text{for} A = 0 \\ \end{cases} The functions are normalized so that they vary between 0 and 1, and they are constrained such that the SLD is continuous at the boundaries of the interface as well as each sub-layers. Thus B and C are determined. Once $\rho_{\text{inter}_i}$ is found at the boundary of the sub-layer of the interface, we can find its contribution to the form factor $P(q)$ .. math:: f_{\text{inter}_i} = 4 \pi \int_{\Delta t_{ \text{inter}_i } } \rho_{ \text{inter}_i } \frac{\sin(qr)} {qr} r^2 dr = 4 \pi \sum_{j=0}^{npts_{\text{inter}_i} -1 } \int_{r_j}^{r_{j+1}} \rho_{ \text{inter}_i } (r_j) \frac{\sin(qr)} {qr} r^2 dr \approx 4 \pi \sum_{j=0}^{npts_{\text{inter}_i} -1 } \Big[ 3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } ( r_{j} ) V ( r_{ \text{sublayer}_j } ) \Big[ \frac {r_j^2 \beta_\text{out}^2 \sin(\beta_\text{out}) - (\beta_\text{out}^2-2) \cos(\beta_\text{out}) } {\beta_\text{out}^4 } \Big] - 3 ( \rho_{ \text{inter}_i } ( r_{j+1} ) - \rho_{ \text{inter}_i } ( r_{j} ) V ( r_{ \text{sublayer}_j-1 } ) \Big[ \frac {r_{j-1}^2 \sin(\beta_\text{in}) - (\beta_\text{in}^2-2) \cos(\beta_\text{in}) } {\beta_\text{in}^4 } \Big] + 3 \rho_{ \text{inter}_i } ( r_{j+1} ) V ( r_j ) \Big[ \frac {\sin(\beta_\text{out}) - \cos(\beta_\text{out}) } {\beta_\text{out}^4 } \Big] - 3 \rho_{ \text{inter}_i } ( r_{j} ) V ( r_j ) \Big[ \frac {\sin(\beta_\text{in}) - \cos(\beta_\text{in}) } {\beta_\text{in}^4 } \Big] \Big] where .. math:: V(a) = \frac {4\pi}{3}a^3 a_\text{in} ~ \frac{r_j}{r_{j+1} -r_j} \text{, } a_\text{out} ~ \frac{r_{j+1}}{r_{j+1} -r_j} \beta_\text{in} = qr_j \text{, } \beta_\text{out} = qr_{j+1} We assume the $\rho_{\text{inter}_i} (r)$ can be approximately linear within a sub-layer $j$ Finally form factor can be calculated by .. math:: P(q) = \frac{[f]^2} {V_\text{particle}} \text{where} V_\text{particle} = V(r_{\text{shell}_N}) For 2D data the scattering intensity is calculated in the same way as 1D, where the $q$ vector is defined as .. math:: q = \sqrt{q_x^2 + q_y^2} .. figure:: img/spherical_sld_1d.jpg 1D plot using the default values (w/400 data point). .. figure:: img/spherical_sld_default_profile.jpg SLD profile from the default values. .. note:: The outer most radius is used as the effective radius for S(Q) when $P(Q) * S(Q)$ is applied. References ---------- L A Feigin and D I Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering, Plenum Press, New York, (1987) """ import numpy as np from numpy import inf, expm1, sqrt from scipy.special import erf name = "spherical_sld" title = "Sperical SLD intensity calculation" description = """ I(q) = background = Incoherent background [1/cm] """ category = "shape:sphere" SHAPES = ["erf(|nu|*z)", "Rpow(z^|nu|)", "Lpow(z^|nu|)", "Rexp(-|nu|z)", "Lexp(-|nu|z)"], # pylint: disable=bad-whitespace, line-too-long # ["name", "units", default, [lower, upper], "type", "description"], parameters = [["n_shells", "", 1, [1, 11], "volume", "number of shells"], ["sld_solvent", "1e-6/Ang^2", 1.0, [-inf, inf], "sld", "solvent sld"], ["sld[n_shells]", "1e-6/Ang^2", 4.06, [-inf, inf], "sld", "sld of the shell"], ["thickness[n_shells]", "Ang", 100.0, [0, inf], "volume", "thickness shell"], ["interface[n_shells]", "Ang", 50.0, [0, inf], "volume", "thickness of the interface"], ["shape[n_shells]", "", 0, SHAPES, "", "interface shape"], ["nu[n_shells]", "", 2.5, [0, inf], "", "interface shape exponent"], ["n_steps", "", 35, [0, inf], "", "number of steps in each interface (must be an odd integer)"], ] # pylint: enable=bad-whitespace, line-too-long source = ["lib/polevl.c", "lib/sas_erf.c", "lib/sph_j1c.c", "spherical_sld.c"] single = False # TODO: fix low q behaviour profile_axes = ['Radius (A)', 'SLD (1e-6/A^2)'] SHAPE_FUNCTIONS = [ lambda z, nu: erf(nu/sqrt(2)*(2*z-1))/(2*erf(nu/sqrt(2))) + 0.5, # erf lambda z, nu: z**nu, # Rpow lambda z, nu: 1 - (1-z)**nu, # Lpow lambda z, nu: expm1(-nu*z)/expm1(-nu), # Rexp lambda z, nu: expm1(nu*z)/expm1(nu), # Lexp ] def profile(n_shells, sld_solvent, sld, thickness, interface, shape, nu, n_steps): """ Returns shape profile with x=radius, y=SLD. """ z = [] rho = [] z0 = 0 # two sld points for core z.append(0) rho.append(sld[0]) for i in range(0, n_shells): z0 += thickness[i] z.append(z0) rho.append(sld[i]) dz = interface[i]/n_steps sld_l = sld[i] sld_r = sld[i+1] if i < n_shells-1 else sld_solvent interface = SHAPE_FUNCTIONS[int(np.clip(shape[i], 0, len(SHAPES)-1))] for step in range(1, n_steps+1): portion = interface(float(step)/n_steps, max(abs(nu[i]), 1e-14)) z0 += dz z.append(z0) rho.append((sld_r - sld_l)*portion + sld_l) z.append(z0*1.2) rho.append(sld_solvent) # return sld profile (r, beta) return np.asarray(z), np.asarray(rho)*1e-6 def ER(n_shells, thickness, interface): n_shells = int(n_shells) total = (np.sum(thickness[:n_shells], axis=1) + np.sum(interface[:n_shells], axis=1)) return total demo = { "n_shells": 5, "n_steps": 35.0, "sld_solvent": 1.0, "sld":[2.07,4.0,3.5,4.0,3.5], "thickness":[50.0,100.0,100.0,100.0,100.0], "interface":[50.0,50.0,50.0,50.0], "shape": [0,0,0,0,0], "nu":[2.5,2.5,2.5,2.5,2.5], } #TODO: Not working yet """ tests = [ # Accuracy tests based on content in test/utest_extra_models.py [{"n_shells": 5, "n_steps": 35, "sld_solvent": 1.0, "sld": [2.07, 4.0, 3.5, 4.0, 3.5], "thickness": [50.0, 100.0, 100.0, 100.0, 100.0], "interface": [50]*5, "shape": [0]*5, "nu": [2.5]*5, }, 0.001, 0.001], ] """