source: sasmodels/sasmodels/models/sphere.py @ eb69cce

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since eb69cce was eb69cce, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

make model docs more consistent; build pdf docs

  • Property mode set to 100644
File size: 4.0 KB
Line 
1r"""
2For information about polarised and magnetic scattering, click here_.
3
4.. _here: polar_mag_help.html
5
6Definition
7----------
8
9The 1D scattering intensity is calculated in the following way (Guinier, 1955)
10
11.. math::
12
13    I(q) = \frac{\text{scale}}{V} \cdot \left[
14        3V(\Delta\rho) \cdot \frac{\sin(qr) - qr\cos(qr))}{(qr)^3}
15        \right]^2 + \text{background}
16
17where *scale* is a volume fraction, $V$ is the volume of the scatterer,
18$r$ is the radius of the sphere, *background* is the background level and
19*sld* and *solvent_sld* are the scattering length densities (SLDs) of the
20scatterer and the solvent respectively.
21
22Note that if your data is in absolute scale, the *scale* should represent
23the volume fraction (which is unitless) if you have a good fit. If not,
24it should represent the volume fraction times a factor (by which your data
25might need to be rescaled).
26
27The 2D scattering intensity is the same as above, regardless of the
28orientation of $\vec q$.
29
30Validation
31----------
32
33Validation of our code was done by comparing the output of the 1D model
34to the output of the software provided by the NIST (Kline, 2006).
35Figure :num:`figure #sphere-comparison` shows a comparison of the output
36of our model and the output of the NIST software.
37
38.. _sphere-comparison:
39
40.. figure:: img/sphere_comparison.jpg
41
42    Comparison of the DANSE scattering intensity for a sphere with the
43    output of the NIST SANS analysis software. The parameters were set to:
44    *scale* = 1.0, *radius* = 60 |Ang|, *contrast* = 1e-6 |Ang^-2|, and
45    *background* = 0.01 |cm^-1|.
46
47
48References
49----------
50
51A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*,
52John Wiley and Sons, New York, (1955)
53
54*2013/09/09 and 2014/01/06 - Description reviewed by S King and P Parker.*
55"""
56
57from numpy import inf
58
59name = "sphere"
60title = "Spheres with uniform scattering length density"
61description = """\
62P(q)=(scale/V)*[3V(sld-solvent_sld)*(sin(qr)-qr cos(qr))
63                /(qr)^3]^2 + background
64    r: radius of sphere
65    V: The volume of the scatter
66    sld: the SLD of the sphere
67    solvent_sld: the SLD of the solvent
68"""
69category = "shape:sphere"
70
71#             ["name", "units", default, [lower, upper], "type","description"],
72parameters = [["sld", "1e-6/Ang^2", 1, [-inf, inf], "",
73               "Layer scattering length density"],
74              ["solvent_sld", "1e-6/Ang^2", 6, [-inf, inf], "",
75               "Solvent scattering length density"],
76              ["radius", "Ang", 50, [0, inf], "volume",
77               "Sphere radius"],
78             ]
79
80
81# No volume normalization despite having a volume parameter
82# This should perhaps be volume normalized?
83form_volume = """
84    return 1.333333333333333*M_PI*radius*radius*radius;
85    """
86
87Iq = """
88    const double qr = q*radius;
89    const double qrsq = qr*qr;
90    double sn, cn;
91    SINCOS(qr, sn, cn);
92    // Use taylor series for low q to avoid cancellation error.  Tested against
93    // the following expression in quad precision:
94    //     3.0*(sn-qr*cn)/(qr*qr*qr);
95    // Note that the values differ from sasview ~ 5e-12 rather than 5e-14, but
96    // in this case it is likely cancellation errors in the original expression
97    // using double precision that are the source.  Single precision only
98    // requires the first 3 terms.  Double precision requires the 4th term.
99    // The fifth term is not needed, and is commented out below.
100    const double bes = (qr < 1e-1)
101        ? 1.0 + qrsq*(-3./30. + qrsq*(3./840. + qrsq*(-3./45360.)))// + qrsq*(3./3991680.))))
102        : 3.0*(sn/qr - cn)/qrsq;
103    const double fq = bes * (sld - solvent_sld) * form_volume(radius);
104    return 1.0e-4*fq*fq;
105    """
106
107Iqxy = """
108    // never called since no orientation or magnetic parameters.
109    //return -1.0;
110    return Iq(sqrt(qx*qx + qy*qy), sld, solvent_sld, radius);
111    """
112
113def ER(radius):
114    return radius
115
116# VR defaults to 1.0
117
118demo = dict(scale=1, background=0,
119            sld=6, solvent_sld=1,
120            radius=120,
121            radius_pd=.2, radius_pd_n=45)
122oldname = "SphereModel"
123oldpars = dict(sld='sldSph', solvent_sld='sldSolv', radius='radius')
Note: See TracBrowser for help on using the repository browser.