1 | r""" |
---|
2 | For information about polarised and magnetic scattering, see |
---|
3 | the :ref:`magnetism` documentation. |
---|
4 | |
---|
5 | Definition |
---|
6 | ---------- |
---|
7 | |
---|
8 | The 1D scattering intensity is calculated in the following way (Guinier, 1955) |
---|
9 | |
---|
10 | .. math:: |
---|
11 | |
---|
12 | I(q) = \frac{\text{scale}}{V} \cdot \left[ |
---|
13 | 3V(\Delta\rho) \cdot \frac{\sin(qr) - qr\cos(qr))}{(qr)^3} |
---|
14 | \right]^2 + \text{background} |
---|
15 | |
---|
16 | where *scale* is a volume fraction, $V$ is the volume of the scatterer, |
---|
17 | $r$ is the radius of the sphere and *background* is the background level. |
---|
18 | *sld* and *sld_solvent* are the scattering length densities (SLDs) of the |
---|
19 | scatterer and the solvent respectively, whose difference is $\Delta\rho$. |
---|
20 | |
---|
21 | Note that if your data is in absolute scale, the *scale* should represent |
---|
22 | the volume fraction (which is unitless) if you have a good fit. If not, |
---|
23 | it should represent the volume fraction times a factor (by which your data |
---|
24 | might need to be rescaled). |
---|
25 | |
---|
26 | The 2D scattering intensity is the same as above, regardless of the |
---|
27 | orientation of $\vec q$. |
---|
28 | |
---|
29 | Validation |
---|
30 | ---------- |
---|
31 | |
---|
32 | Validation of our code was done by comparing the output of the 1D model |
---|
33 | to the output of the software provided by the NIST (Kline, 2006). |
---|
34 | |
---|
35 | |
---|
36 | References |
---|
37 | ---------- |
---|
38 | |
---|
39 | .. [#] A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955) |
---|
40 | |
---|
41 | Source |
---|
42 | ------ |
---|
43 | |
---|
44 | `sphere.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/sphere.py>`_ |
---|
45 | |
---|
46 | `sphere.c <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/sphere.c>`_ |
---|
47 | |
---|
48 | Authorship and Verification |
---|
49 | ---------------------------- |
---|
50 | |
---|
51 | * **Author:** |
---|
52 | * **Last Modified by:** |
---|
53 | * **Last Reviewed by:** S King and P Parker **Date:** 2013/09/09 and 2014/01/06 |
---|
54 | * **Source added by :** Steve King **Date:** March 25, 2019 |
---|
55 | """ |
---|
56 | |
---|
57 | import numpy as np |
---|
58 | from numpy import inf |
---|
59 | |
---|
60 | name = "sphere" |
---|
61 | title = "Spheres with uniform scattering length density" |
---|
62 | description = """\ |
---|
63 | P(q)=(scale/V)*[3V(sld-sld_solvent)*(sin(qr)-qr cos(qr)) |
---|
64 | /(qr)^3]^2 + background |
---|
65 | r: radius of sphere |
---|
66 | V: The volume of the scatter |
---|
67 | sld: the SLD of the sphere |
---|
68 | sld_solvent: the SLD of the solvent |
---|
69 | """ |
---|
70 | category = "shape:sphere" |
---|
71 | |
---|
72 | # ["name", "units", default, [lower, upper], "type","description"], |
---|
73 | parameters = [["sld", "1e-6/Ang^2", 1, [-inf, inf], "sld", |
---|
74 | "Layer scattering length density"], |
---|
75 | ["sld_solvent", "1e-6/Ang^2", 6, [-inf, inf], "sld", |
---|
76 | "Solvent scattering length density"], |
---|
77 | ["radius", "Ang", 50, [0, inf], "volume", |
---|
78 | "Sphere radius"], |
---|
79 | ] |
---|
80 | |
---|
81 | source = ["lib/sas_3j1x_x.c", "sphere.c"] |
---|
82 | have_Fq = True |
---|
83 | effective_radius_type = ["radius"] |
---|
84 | |
---|
85 | def random(): |
---|
86 | """Return a random parameter set for the model.""" |
---|
87 | radius = 10**np.random.uniform(1.3, 4) |
---|
88 | pars = dict( |
---|
89 | radius=radius, |
---|
90 | ) |
---|
91 | return pars |
---|
92 | |
---|
93 | tests = [ |
---|
94 | [{}, 0.2, 0.726362], # each test starts with default parameter values inside { }, unless modified. Then Q and expected value of I(Q) |
---|
95 | [{"scale": 1., "background": 0., "sld": 6., "sld_solvent": 1., |
---|
96 | "radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, |
---|
97 | 0.2, 0.2288431], |
---|
98 | [{"radius": 120., "radius_pd": 0.02, "radius_pd_n":45}, |
---|
99 | 0.2, 792.0646662454202, 1166737.0473152, 120.0, 7246723.820358589, 1.0], # the longer list here checks F1, F2, R_eff, volume, volume_ratio = call_Fq(kernel, pars) |
---|
100 | # But note P(Q) = F2/volume |
---|
101 | # F and F^2 are "unscaled", with for n <F F*>S(q) or for beta approx I(q) = n [<F F*> + <F><F*> (S(q) - 1)] |
---|
102 | # for n the number density and <.> the orientation average, and F = integral rho(r) exp(i q . r) dr. |
---|
103 | # The number density is volume fraction divided by particle volume. |
---|
104 | # Effectively, this leaves F = V drho form, where form is the usual 3 j1(qr)/(qr) or whatever depending on the shape. |
---|
105 | # [{"@S": "hardsphere"}, |
---|
106 | # 0.01, 55.881884232102124], # this is current value, not verified elsewhere yet |
---|
107 | # [{"radius": 120., "radius_pd": 0.2, "radius_pd_n":45}, |
---|
108 | # 0.2, 1.233304061, [1850806.119736], 120.0, 8087664.1226, 1.0], # the longer list here checks F1, F2, R_eff, volume, volume_ratio = call_Fq(kernel, pars) |
---|
109 | # [{"@S": "hardsphere"}, |
---|
110 | # 0.2, 0.14730859242492958], # this is current value, not verified elsewhere yet |
---|
111 | # [{"@S": "hardsphere"}, |
---|
112 | # 0.1, 0.7940350343811906], # this is current value, not verified elsewhere yet |
---|
113 | [{"@S": "hardsphere", |
---|
114 | "radius": 120., "radius_pd": 0.2, "radius_pd_n":45, |
---|
115 | "volfraction":0.2, |
---|
116 | "radius_effective":45.0, # uses this (check) |
---|
117 | "structure_factor_mode": 1, # 0 = normal decoupling approximation, 1 = beta(Q) approx |
---|
118 | "radius_effective_mode": 0 # equivalent sphere, there is only one valid mode for sphere. says -this used r_eff =0 or default 50? |
---|
119 | }, 0.01, 1316.2990966463444 ], |
---|
120 | [{"@S": "hardsphere", |
---|
121 | "radius": 120., "radius_pd": 0.2, "radius_pd_n":45, |
---|
122 | "volfraction":0.2, |
---|
123 | "radius_effective":50.0, # hard sphere structure factor |
---|
124 | "structure_factor_mode": 1, # 0 = normal decoupling approximation, 1 = beta(Q) approx |
---|
125 | "radius_effective_mode": 0 # this used r_eff =0 or default 50? |
---|
126 | }, 0.01, 1324.7375636587356 ], |
---|
127 | [{"@S": "hardsphere", |
---|
128 | "radius": 120., "radius_pd": 0.2, "radius_pd_n":45, |
---|
129 | "volfraction":0.2, |
---|
130 | "radius_effective":50.0, # hard sphere structure factor |
---|
131 | "structure_factor_mode": 1, # 0 = normal decoupling approximation, 1 = beta(Q) approx |
---|
132 | "radius_effective_mode": 1 # this used 120 ??? |
---|
133 | }, 0.01, 1579.2858949296565 ] |
---|
134 | ] |
---|
135 | # putting None for expected result will pass the test if there are no errors from the routine, but without any check on the value of the result |
---|