source: sasmodels/sasmodels/models/rpa.py @ c1e44e5

Last change on this file since c1e44e5 was c1e44e5, checked in by Paul Kienzle <pkienzle@…>, 5 years ago

Add local link to source files. Refs #1263.

  • Property mode set to 100644
File size: 5.3 KB
Line 
1r"""
2Definition
3----------
4
5Calculates the macroscopic scattering intensity for a multi-component
6homogeneous mixture of polymers using the Random Phase Approximation.
7This general formalism contains 10 specific cases
8
9Case 0: C/D binary mixture of homopolymers
10
11Case 1: C-D diblock copolymer
12
13Case 2: B/C/D ternary mixture of homopolymers
14
15Case 3: C/C-D mixture of a homopolymer B and a diblock copolymer C-D
16
17Case 4: B-C-D triblock copolymer
18
19Case 5: A/B/C/D quaternary mixture of homopolymers
20
21Case 6: A/B/C-D mixture of two homopolymers A/B and a diblock C-D
22
23Case 7: A/B-C-D mixture of a homopolymer A and a triblock B-C-D
24
25Case 8: A-B/C-D mixture of two diblock copolymers A-B and C-D
26
27Case 9: A-B-C-D tetra-block copolymer
28
29.. note::
30    These case numbers are different from those in the NIST SANS package!
31
32The models are based on the papers by Akcasu *et al.* [1] and by
33Hammouda [2] assuming the polymer follows Gaussian statistics such
34that $R_g^2 = n b^2/6$ where $b$ is the statistical segment length and $n$ is
35the number of statistical segment lengths. A nice tutorial on how these are
36constructed and implemented can be found in chapters 28, 31 and 34, and Part H,
37of Hammouda's 'SANS Toolbox' [3].
38
39In brief, the macroscopic cross sections are derived from the general forms
40for homopolymer scattering and the multiblock cross-terms while the inter,
41polymer cross terms are described in the usual way by the $\chi$ parameter.
42
43USAGE NOTES:
44
45* Only one case can be used at any one time.
46* The RPA (mean field) formalism only applies only when the multicomponent
47  polymer mixture is in the homogeneous mixed-phase region.
48* **Component D is assumed to be the "background" component (ie, all contrasts
49  are calculated with respect to component D).** So the scattering contrast
50  for a C/D blend $\rho_{C/D} = [\rho_C - \rho_D]$\ :sup:`2`.
51* Depending on which case is being used, the number of fitting parameters can
52  vary.
53
54  .. Note::
55    * In general the degrees of polymerization, the volume
56      fractions, the molar volumes, and the neutron scattering lengths for each
57      component are obtained from other methods and held fixed while The *scale*
58      parameter should be held equal to unity.
59    * The variables are normally the segment lengths ($b_a$, $b_b$,
60      etc.) and $\chi$ parameters ($K_{ab}$, $K_{ac}$, etc).
61
62References
63----------
64
65.. [#] A Z Akcasu, R Klein and B Hammouda, *Macromolecules*, 26 (1993) 4136
66.. [#] B. Hammouda, *Advances in Polymer Science* 106 (1993) 87
67.. [#] B. Hammouda, *SANS Toolbox* https://www.ncnr.nist.gov/staff/hammouda/the_sans_toolbox.pdf.
68
69Authorship and Verification
70----------------------------
71
72* **Author:** Boualem Hammouda - NIST IGOR/DANSE **Date:** pre 2010
73* **Converted to sasmodels by:** Paul Kienzle **Date:** July 18, 2016
74* **Last Modified by:** Paul Butler **Date:** March 12, 2017
75* **Last Reviewed by:** Steve King **Date:** March 27, 2019
76"""
77
78from numpy import inf
79
80name = "rpa"
81title = "Random Phase Approximation"
82description = """
83This formalism applies to multicomponent polymer mixtures in the
84homogeneous (mixed) phase region only.
85Case 0: C/D binary mixture of homopolymers
86Case 1: C-D diblock copolymer
87Case 2: B/C/D ternary mixture of homopolymers
88Case 3: B/C-D mixture of homopolymer b and diblock copolymer C-D
89Case 4: B-C-D triblock copolymer
90Case 5: A/B/C/D quaternary mixture of homopolymers
91Case 6: A/B/C-D mixture of two homopolymers A/B and a diblock C-D
92Case 7: A/B-C-D mixture of a homopolymer A and a triblock B-C-D
93Case 8: A-B/C-D mixture of two diblock copolymers A-B and C-D
94Case 9: A-B-C-D four-block copolymer
95See details in the model function help
96"""
97category = "shape-independent"
98
99CASES = [
100    "C+D binary mixture",
101    "C:D diblock copolymer",
102    "B+C+D ternary mixture",
103    "B+C:D binary mixture",
104    "B:C:D triblock copolymer",
105    "A+B+C+D quaternary mixture",
106    "A+B+C:D ternary mixture",
107    "A+B:C:D binary mixture",
108    "A:B+C:D binary mixture",
109    "A:B:C:D quadblock copolymer",
110]
111
112#   ["name", "units", default, [lower, upper], "type","description"],
113parameters = [
114    ["case_num", "", 1, [CASES], "", "Component organization"],
115
116    ["N[4]", "", 1000.0, [1, inf], "", "Degree of polymerization"],
117    ["Phi[4]", "", 0.25, [0, 1], "", "volume fraction"],
118    ["v[4]", "mL/mol", 100.0, [0, inf], "", "molar volume"],
119    ["L[4]", "fm", 10.0, [-inf, inf], "", "scattering length"],
120    ["b[4]", "Ang", 5.0, [0, inf], "", "segment length"],
121
122    ["K12", "", -0.0004, [-inf, inf], "", "A:B interaction parameter"],
123    ["K13", "", -0.0004, [-inf, inf], "", "A:C interaction parameter"],
124    ["K14", "", -0.0004, [-inf, inf], "", "A:D interaction parameter"],
125    ["K23", "", -0.0004, [-inf, inf], "", "B:C interaction parameter"],
126    ["K24", "", -0.0004, [-inf, inf], "", "B:D interaction parameter"],
127    ["K34", "", -0.0004, [-inf, inf], "", "C:D interaction parameter"],
128]
129
130
131source = ["rpa.c"]
132single = False
133
134control = "case_num"
135HIDE_ALL = set("Phi4".split())
136HIDE_A = set("N1 Phi1 v1 L1 b1 K12 K13 K14".split()).union(HIDE_ALL)
137HIDE_AB = set("N2 Phi2 v2 L2 b2 K23 K24".split()).union(HIDE_A)
138def hidden(case_num):
139    """
140    Return a list of parameters to hide depending on the multiplicity parameter.
141    """
142    case_num = int(case_num+0.5)
143    if case_num < 2:
144        return HIDE_AB
145    elif case_num < 5:
146        return HIDE_A
147    else:
148        return HIDE_ALL
149
150# TODO: no random parameters generated for RPA
Note: See TracBrowser for help on using the repository browser.