#poly_gauss_coil model #conversion of Poly_GaussCoil.py #converted by Steve King, Mar 2016 r""" This empirical model describes the scattering from *polydisperse* polymer chains in theta solvents or polymer melts, assuming a Schulz-Zimm type molecular weight distribution. To describe the scattering from *monodisperse* polymer chains, see the :ref:`mono-gauss-coil` model. Definition ---------- .. math:: I(q) = \text{scale} \cdot I_0 \cdot P(q) + \text{background} where .. math:: I_0 &= \phi_\text{poly} \cdot V \cdot (\rho_\text{poly}-\rho_\text{solv})^2 \\ P(q) &= 2 [(1 + UZ)^{-1/U} + Z - 1] / [(1 + U) Z^2] \\ Z &= [(q R_g)^2] / (1 + 2U) \\ U &= (Mw / Mn) - 1 = \text{polydispersity ratio} - 1 \\ V &= M / (N_A \delta) Here, $\phi_\text{poly}$, is the volume fraction of polymer, $V$ is the volume of a polymer coil, $M$ is the molecular weight of the polymer, $N_A$ is Avogadro's Number, $\delta$ is the bulk density of the polymer, $\rho_\text{poly}$ is the sld of the polymer, $\rho_\text{solv}$ is the sld of the solvent, and $R_g$ is the radius of gyration of the polymer coil. The 2D scattering intensity is calculated in the same way as the 1D, but where the $q$ vector is redefined as .. math:: q = \sqrt{q_x^2 + q_y^2} References ---------- .. [#] O Glatter and O Kratky (editors), *Small Angle X-ray Scattering*, Academic Press, (1982) Page 404 .. [#] J S Higgins, H C Benoit, *Polymers and Neutron Scattering*, Oxford Science Publications, (1996) .. [#] S M King, *Small Angle Neutron Scattering* in *Modern Techniques for Polymer Characterisation*, Wiley, (1999) .. [#] http://www.ncnr.nist.gov/staff/hammouda/distance_learning/chapter_28.pdf Source ------ `poly_gauss_coil.py `_ `poly_gauss_coil.c `_ Authorship and Verification ---------------------------- * **Author:** * **Last Modified by:** * **Last Reviewed by:** * **Source added by :** Steve King **Date:** March 25, 2019 """ import numpy as np from numpy import inf, expm1, power name = "poly_gauss_coil" title = "Scattering from polydisperse polymer coils" description = """ Evaluates the scattering from polydisperse polymer chains. """ category = "shape-independent" # pylint: disable=bad-whitespace, line-too-long # ["name", "units", default, [lower, upper], "type", "description"], parameters = [ ["i_zero", "1/cm", 70.0, [0.0, inf], "", "Intensity at q=0"], ["rg", "Ang", 75.0, [0.0, inf], "", "Radius of gyration"], ["polydispersity", "None", 2.0, [1.0, inf], "", "Polymer Mw/Mn"], ] # pylint: enable=bad-whitespace, line-too-long # NB: Scale and Background are implicit parameters on every model def Iq(q, i_zero, rg, polydispersity): # pylint: disable = missing-docstring u = polydispersity - 1.0 z = q**2 * (rg**2 / (1.0 + 2.0*u)) # need to trap the case of the polydispersity being 1 (ie, monodisperse!) if polydispersity == 1.0: result = 2.0 * (expm1(-z) + z) index = q != 0. result[index] /= z[index]**2 result[~index] = 1.0 else: # Taylor series around z=0 of (2*(1+uz)^(-1/u) + z - 1) / (z^2(u+1)) p = [ #(-1 - 20*u - 155*u**2 - 580*u**3 - 1044*u**4 - 720*u**5) / 2520., #(+1 + 14*u + 71*u**2 + 154*u**3 + 120*u**4) / 360., #(-1 - 9*u - 26*u**2 - 24*u**3) / 60., (+1 + 5*u + 6*u**2) / 12., (-1 - 2*u) / 3., (+1), ] result = 2.0 * (power(1.0 + u*z, -1.0/u) + z - 1.0) / (1.0 + u) index = z > 1e-4 result[index] /= z[index]**2 result[~index] = np.polyval(p, z[~index]) return i_zero * result Iq.vectorized = True # Iq accepts an array of q values def random(): """Return a random parameter set for the model.""" rg = 10**np.random.uniform(0, 4) #rg = 1e3 polydispersity = 10**np.random.uniform(0, 3) pars = dict( #scale=1, background=0, i_zero=1e7, # i_zero is a simple scale rg=rg, polydispersity=polydispersity, ) return pars demo = dict(scale=1.0, i_zero=70.0, rg=75.0, polydispersity=2.0, background=0.0) # these unit test values taken from SasView 3.1.2 tests = [ [{'scale': 1.0, 'i_zero': 70.0, 'rg': 75.0, 'polydispersity': 2.0, 'background': 0.0}, [0.0106939, 0.469418], [57.6405, 0.169016]], ]