#poly_gauss_coil model #conversion of Poly_GaussCoil.py #converted by Steve King, Mar 2016 r""" This empirical model describes the scattering from *polydisperse* polymer chains in theta solvents or polymer melts, assuming a Schulz-Zimm type molecular weight distribution. To describe the scattering from *monodisperse* polymer chains, see the :ref:`mono_gauss_coil ` model. Definition ---------- *I(q)* = *scale* |cdot| *I* \ :sub:`0` |cdot| *P(q)* + *background* where *I*\ :sub:`0` = |phi|\ :sub:`poly` |cdot| *V* |cdot| (|rho|\ :sub:`poly` - |rho|\ :sub:`solv`)\ :sup:`2` *P(q)* = 2 [(1 + UZ)\ :sup:`-1/U` + Z - 1] / [(1 + U) Z\ :sup:`2`] *Z* = [(*q R*\ :sub:`g`)\ :sup:`2`] / (1 + 2U) *U* = (Mw / Mn) - 1 = (*polydispersity ratio*) - 1 and *V* = *M* / (*N*\ :sub:`A` |delta|) Here, |phi|\ :sub:`poly`, is the volume fraction of polymer, *V* is the volume of a polymer coil, *M* is the molecular weight of the polymer, *N*\ :sub:`A` is Avogadro's Number, |delta| is the bulk density of the polymer, |rho|\ :sub:`poly` is the sld of the polymer, |rho|\ :sub:`solv` is the sld of the solvent, and *R*\ :sub:`g` is the radius of gyration of the polymer coil. The 2D scattering intensity is calculated in the same way as the 1D, but where the *q* vector is redefined as .. math:: q = \sqrt{q_x^2 + q_y^2} References ---------- O Glatter and O Kratky (editors), *Small Angle X-ray Scattering*, Academic Press, (1982) Page 404. J S Higgins, H C Benoit, *Polymers and Neutron Scattering*, Oxford Science Publications, (1996). S M King, *Small Angle Neutron Scattering* in *Modern Techniques for Polymer Characterisation*, Wiley, (1999). http://www.ncnr.nist.gov/staff/hammouda/distance_learning/chapter_28.pdf """ from numpy import inf, sqrt, power name = "poly_gauss_coil" title = "Scattering from polydisperse polymer coils" description = """ Evaluates the scattering from polydisperse polymer chains. """ category = "shape-independent" # ["name", "units", default, [lower, upper], "type", "description"], parameters = [["i_zero", "1/cm", 1.0, [-inf, inf], "", "Intensity at q=0"], ["radius_gyration", "Ang", 50.0, [0.0, inf], "", "Radius of gyration"], ["polydispersity", "None", 2.0, [1.0, inf], "", "Polymer Mw/Mn"]] # NB: Scale and Background are implicit parameters on every model def Iq(q, i_zero, radius_gyration, polydispersity): # pylint: disable = missing-docstring u = polydispersity - 1.0 # TO DO # should trap the case of polydispersity = 1 by switching to a taylor expansion minusoneonu = -1.0 / u z = (q * radius_gyration) ** 2 / (1.0 + 2.0 * u) if q == 0: inten = i_zero * 1.0 else: inten = i_zero * 2.0 * (power((1.0 + u * z),minusoneonu) + z - 1.0 ) / ((1.0 + u) * (z * z)) return inten #Iq.vectorized = True # Iq accepts an array of q values def Iqxy(qx, qy, *args): # pylint: disable = missing-docstring return Iq(sqrt(qx ** 2 + qy ** 2), *args) #Iqxy.vectorized = True # Iqxy accepts an array of qx, qy values demo = dict(scale = 1.0, i_zero = 1.0, radius_gyration = 50.0, polydispersity = 2.0, background = 0.0) oldname = "Poly_GaussCoil" oldpars = dict(scale = 'scale', radius_gyration = 'rg', polydispersity = 'poly_m', background = 'background') tests = [ [{'scale': 1.0, 'radius_gyration': 50.0, 'polydispersity': 2.0, 'background': 0.0}, [0.0106939, 0.469418], [0.912993, 0.0054163]], ]