#poly_gauss_coil model #conversion of Poly_GaussCoil.py #converted by Steve King, Mar 2016 r""" This empirical model describes the scattering from *polydisperse* polymer chains in theta solvents or polymer melts, assuming a Schulz-Zimm type molecular weight distribution. To describe the scattering from *monodisperse* polymer chains, see the :ref:`mono_gauss_coil ` model. Definition ---------- *I(q)* = *scale* |cdot| *I* \ :sub:`0` |cdot| *P(q)* + *background* where *I*\ :sub:`0` = |phi|\ :sub:`poly` |cdot| *V* |cdot| (|rho|\ :sub:`poly` - |rho|\ :sub:`solv`)\ :sup:`2` *P(q)* = 2 [(1 + UZ)\ :sup:`-1/U` + Z - 1] / [(1 + U) Z\ :sup:`2`] *Z* = [(*q R*\ :sub:`g`)\ :sup:`2`] / (1 + 2U) *U* = (Mw / Mn) - 1 = (*polydispersity ratio*) - 1 and *V* = *M* / (*N*\ :sub:`A` |delta|) Here, |phi|\ :sub:`poly`, is the volume fraction of polymer, *V* is the volume of a polymer coil, *M* is the molecular weight of the polymer, *N*\ :sub:`A` is Avogadro's Number, |delta| is the bulk density of the polymer, |rho|\ :sub:`poly` is the sld of the polymer, |rho|\ :sub:`solv` is the sld of the solvent, and *R*\ :sub:`g` is the radius of gyration of the polymer coil. The 2D scattering intensity is calculated in the same way as the 1D, but where the *q* vector is redefined as .. math:: q = \sqrt{q_x^2 + q_y^2} References ---------- O Glatter and O Kratky (editors), *Small Angle X-ray Scattering*, Academic Press, (1982) Page 404. J S Higgins, H C Benoit, *Polymers and Neutron Scattering*, Oxford Science Publications, (1996). S M King, *Small Angle Neutron Scattering* in *Modern Techniques for Polymer Characterisation*, Wiley, (1999). http://www.ncnr.nist.gov/staff/hammouda/distance_learning/chapter_28.pdf """ from numpy import inf, exp, power name = "poly_gauss_coil" title = "Scattering from polydisperse polymer coils" description = """ Evaluates the scattering from polydisperse polymer chains. """ category = "shape-independent" # ["name", "units", default, [lower, upper], "type", "description"], parameters = [["i_zero", "1/cm", 70.0, [0.0, inf], "", "Intensity at q=0"], ["radius_gyration", "Ang", 75.0, [0.0, inf], "", "Radius of gyration"], ["polydispersity", "None", 2.0, [1.0, inf], "", "Polymer Mw/Mn"]] # NB: Scale and Background are implicit parameters on every model def Iq(q, i_zero, radius_gyration, polydispersity): # pylint: disable = missing-docstring u = polydispersity - 1.0 z = (q*radius_gyration)**2 / (1.0 + 2.0*u) # need to trap the case of the polydispersity being 1 (ie, monodispersity!) if polydispersity == 1.0: inten = i_zero * 2.0 * (exp(-z) + z - 1.0) else: inten = i_zero * 2.0 * (power(1.0 + u*z, -1.0/u) + z - 1.0) / (1.0 + u) index = q != 0. inten[~index] = i_zero inten[index] /= z[index]**2 return inten Iq.vectorized = True # Iq accepts an array of q values demo = dict(scale = 1.0, i_zero = 70.0, radius_gyration = 75.0, polydispersity = 2.0, background = 0.0) # these unit test values taken from SasView 3.1.2 tests = [ [{'scale': 1.0, 'i_zero': 70.0, 'radius_gyration': 75.0, 'polydispersity': 2.0, 'background': 0.0}, [0.0106939, 0.469418], [57.6405, 0.169016]], ]