source: sasmodels/sasmodels/models/pearl_necklace.py @ c0136c72

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since c0136c72 was c0136c72, checked in by smk78, 5 months ago

Corrected doc formatting errors introduced by AJJ ;-)

  • Property mode set to 100644
File size: 5.3 KB
Line 
1r"""
2This model provides the form factor for a pearl necklace composed of two
3elements: *N* pearls (homogeneous spheres of radius *R*) freely jointed by *M*
4rods (like strings - with a total mass *Mw* = *M* \* *m*\ :sub:`r` + *N* \* *m*\
5:sub:`s`, and the string segment length (or edge separation) *l*
6(= *A* - 2\ *R*)). *A* is the center-to-center pearl separation distance.
7
8.. figure:: img/pearl_necklace_geometry.jpg
9
10    Pearl Necklace schematic
11
12Definition
13----------
14
15The output of the scattering intensity function for the pearl_necklace is
16given by (Schweins, 2004)
17
18.. math::
19
20    I(q)=\frac{ \text{scale} }{V} \cdot \frac{(S_{ss}(q)+S_{ff}(q)+S_{fs}(q))}
21        {(M \cdot m_f + N \cdot m_s)^2} + \text{bkg}
22
23where
24
25.. math::
26
27    S_{ss}(q) &= 2m_s^2\psi^2(q)\left[\frac{N}{1-sin(qA)/qA}-\frac{N}{2}-
28        \frac{1-(sin(qA)/qA)^N}{(1-sin(qA)/qA)^2}\cdot\frac{sin(qA)}{qA}\right] \\
29    S_{ff}(q) &= m_r^2\left[M\left\{2\Lambda(q)-\left(\frac{sin(ql/2)}{ql/2}\right)\right\}+
30        \frac{2M\beta^2(q)}{1-sin(qA)/qA}-2\beta^2(q)\cdot
31        \frac{1-(sin(qA)/qA)^M}{(1-sin(qA)/qA)^2}\right] \\
32    S_{fs}(q) &= m_r \beta (q) \cdot m_s \psi (q) \cdot 4\left[
33        \frac{N-1}{1-sin(qA)/qA}-\frac{1-(sin(qA)/qA)^{N-1}}{(1-sin(qA)/qA)^2}
34        \cdot \frac{sin(qA)}{qA}\right] \\
35    \psi(q) &= 3 \cdot \frac{sin(qR)-(qR)\cdot cos(qR)}{(qR)^3} \\
36    \Lambda(q) &= \frac{\int_0^{ql}\frac{sin(t)}{t}dt}{ql} \\
37    \beta(q) &= \frac{\int_{qR}^{q(A-R)}\frac{sin(t)}{t}dt}{ql}
38
39where the mass *m*\ :sub:`i` is (SLD\ :sub:`i` - SLD\ :sub:`solvent`) \*
40(volume of the *N* pearls/rods). *V* is the total volume of the necklace.
41
42.. note::
43
44   *num_pearls* must be an integer.
45
46The 2D scattering intensity is the same as $P(q)$ above, regardless of the
47orientation of the *q* vector.
48
49References
50----------
51
52.. [#] R Schweins and K Huber, *Particle Scattering Factor of Pearl Necklace Chains*,
53       *Macromol. Symp.* 211 (2004) 25-42 2004
54
55.. [#] L. Onsager, *Ann. New York Acad. Sci.*, 51 (1949) 627-659
56
57Source
58------
59
60`pearl_necklace.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/pearl_necklace.py>`_
61
62`pearl_necklace.c <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/pearl_necklace.c>`_
63
64Authorship and Verification
65----------------------------
66
67* **Author:**
68* **Last Modified by:** Andrew Jackson **Date:** March 28, 2019
69* **Last Reviewed by:** Steve King **Date:** March 28, 2019
70* **Source added by :** Steve King **Date:** March 25, 2019
71"""
72
73import numpy as np
74from numpy import inf
75
76name = "pearl_necklace"
77title = "Colloidal spheres chained together with no preferential orientation"
78description = """
79Calculate form factor for Pearl Necklace Model
80[Macromol. Symp. 2004, 211, 25-42]
81Parameters:
82background:background
83scale: scale factor
84sld: the SLD of the pearl spheres
85sld_string: the SLD of the strings
86sld_solvent: the SLD of the solvent
87num_pearls: number of the pearls
88radius: the radius of a pearl
89edge_sep: the length of string segment; surface to surface
90thick_string: thickness (ie, diameter) of the string
91"""
92category = "shape:cylinder"
93
94#             ["name", "units", default, [lower, upper], "type","description"],
95parameters = [["radius", "Ang", 80.0, [0, inf], "volume",
96               "Mean radius of the chained spheres"],
97              ["edge_sep", "Ang", 350.0, [0, inf], "volume",
98               "Mean separation of chained particles"],
99              ["thick_string", "Ang", 2.5, [0, inf], "volume",
100               "Thickness of the chain linkage"],
101              ["num_pearls", "none", 3, [1, inf], "volume",
102               "Number of pearls in the necklace (must be integer)"],
103              ["sld", "1e-6/Ang^2", 1.0, [-inf, inf], "sld",
104               "Scattering length density of the chained spheres"],
105              ["sld_string", "1e-6/Ang^2", 1.0, [-inf, inf], "sld",
106               "Scattering length density of the chain linkage"],
107              ["sld_solvent", "1e-6/Ang^2", 6.3, [-inf, inf], "sld",
108               "Scattering length density of the solvent"],
109             ]
110
111source = ["lib/sas_Si.c", "lib/sas_3j1x_x.c", "pearl_necklace.c"]
112single = False  # use double precision unless told otherwise
113effective_radius_type = ["equivalent volume sphere"]
114
115def random():
116    """Return a random parameter set for the model."""
117    radius = 10**np.random.uniform(1, 3) # 1 - 1000
118    thick_string = 10**np.random.uniform(0, np.log10(radius)-1) # 1 - radius/10
119    edge_sep = 10**np.random.uniform(0, 3)  # 1 - 1000
120    num_pearls = np.round(10**np.random.uniform(0.3, 3)) # 2 - 1000
121    pars = dict(
122        radius=radius,
123        edge_sep=edge_sep,
124        thick_string=thick_string,
125        num_pearls=num_pearls,
126    )
127    return pars
128
129# parameters for demo
130demo = dict(scale=1, background=0, radius=80.0, edge_sep=350.0,
131            num_pearls=3, sld=1, sld_solvent=6.3, sld_string=1,
132            thick_string=2.5,
133            radius_pd=.2, radius_pd_n=5,
134            edge_sep_pd=25.0, edge_sep_pd_n=5,
135            num_pearls_pd=0, num_pearls_pd_n=0,
136            thick_string_pd=0.2, thick_string_pd_n=5,
137           )
138# ER function is not being used here, not that it is likely very sensible to
139# include an S(Q) with this model, the default in sasview 5.0 would be to the
140# "unconstrained" radius_effective.
141#tests = [[{}, 0.001, 17380.245], [{}, 'ER', 115.39502]]
142tests = [[{}, 0.001, 17380.245]]
Note: See TracBrowser for help on using the repository browser.