source: sasmodels/sasmodels/models/parallelepiped.py @ eda8b30

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since eda8b30 was eda8b30, checked in by richardh, 6 years ago

further changes to model docs for orientation calcs

  • Property mode set to 100644
File size: 10.1 KB
Line 
1# parallelepiped model
2# Note: model title and parameter table are inserted automatically
3r"""
4The form factor is normalized by the particle volume.
5For information about polarised and magnetic scattering, see
6the :ref:`magnetism` documentation.
7
8Definition
9----------
10
11 This model calculates the scattering from a rectangular parallelepiped
12 (\:numref:`parallelepiped-image`\).
13 If you need to apply polydispersity, see also :ref:`rectangular-prism`.
14
15.. _parallelepiped-image:
16
17
18.. figure:: img/parallelepiped_geometry.jpg
19
20   Parallelepiped with the corresponding definition of sides.
21
22The three dimensions of the parallelepiped (strictly here a cuboid) may be
23given in *any* size order. To avoid multiple fit solutions, especially
24with Monte-Carlo fit methods, it may be advisable to restrict their ranges.
25There may be a number of closely similar "best fits", so some trial and
26error, or fixing of some dimensions at expected values, may help.
27
28The 1D scattering intensity $I(q)$ is calculated as:
29
30.. Comment by Miguel Gonzalez:
31   I am modifying the original text because I find the notation a little bit
32   confusing. I think that in most textbooks/papers, the notation P(Q) is
33   used for the form factor (adim, P(Q=0)=1), although F(q) seems also to
34   be used. But here (as for many other models), P(q) is used to represent
35   the scattering intensity (in cm-1 normally). It would be good to agree on
36   a common notation.
37
38.. math::
39
40    I(q) = \frac{\text{scale}}{V} (\Delta\rho \cdot V)^2
41           \left< P(q, \alpha) \right> + \text{background}
42
43where the volume $V = A B C$, the contrast is defined as
44$\Delta\rho = \rho_\text{p} - \rho_\text{solvent}$,
45$P(q, \alpha)$ is the form factor corresponding to a parallelepiped oriented
46at an angle $\alpha$ (angle between the long axis C and $\vec q$),
47and the averaging $\left<\ldots\right>$ is applied over all orientations.
48
49Assuming $a = A/B < 1$, $b = B /B = 1$, and $c = C/B > 1$, the
50form factor is given by (Mittelbach and Porod, 1961)
51
52.. math::
53
54    P(q, \alpha) = \int_0^1 \phi_Q\left(\mu \sqrt{1-\sigma^2},a\right)
55        \left[S(\mu c \sigma/2)\right]^2 d\sigma
56
57with
58
59.. math::
60
61    \phi_Q(\mu,a) &= \int_0^1
62        \left\{S\left[\frac{\mu}{2}\cos\left(\frac{\pi}{2}u\right)\right]
63               S\left[\frac{\mu a}{2}\sin\left(\frac{\pi}{2}u\right)\right]
64               \right\}^2 du \\
65    S(x) &= \frac{\sin x}{x} \\
66    \mu &= qB
67
68The scattering intensity per unit volume is returned in units of |cm^-1|.
69
70NB: The 2nd virial coefficient of the parallelepiped is calculated based on
71the averaged effective radius, after appropriately sorting the three
72dimensions, to give an oblate or prolate particle, $(=\sqrt{AB/\pi})$ and
73length $(= C)$ values, and used as the effective radius for
74$S(q)$ when $P(q) \cdot S(q)$ is applied.
75
76For 2d data the orientation of the particle is required, described using
77angles $\theta$, $\phi$ and $\Psi$ as in the diagrams below, for further details
78of the calculation and angular dispersions see :ref:`orientation` .
79
80.. Comment by Miguel Gonzalez:
81   The following text has been commented because I think there are two
82   mistakes. Psi is the rotational angle around C (but I cannot understand
83   what it means against the q plane) and psi=0 corresponds to a||x and b||y.
84
85   The angle $\Psi$ is the rotational angle around the $C$ axis against
86   the $q$ plane. For example, $\Psi = 0$ when the $B$ axis is parallel
87   to the $x$-axis of the detector.
88
89The angle $\Psi$ is the rotational angle around the $C$ axis.
90For $\theta = 0$ and $\phi = 0$, $\Psi = 0$ corresponds to the $B$ axis
91oriented parallel to the y-axis of the detector with $A$ along the x-axis.
92For other $\theta$, $\phi$ values, the parallelepiped has to be first rotated
93$\theta$ degrees in the $z-x$ plane and then $\phi$ degrees around the $z$ axis,
94before doing a final rotation of $\Psi$ degrees around the resulting $C$ axis
95of the particle to obtain the final orientation of the parallelepiped.
96
97.. _parallelepiped-orientation:
98
99.. figure:: img/parallelepiped_angle_definition.png
100
101    Definition of the angles for oriented parallelepiped, shown with $A<B<C$.
102
103.. figure:: img/parallelepiped_angle_projection.png
104
105    Examples of the angles for an oriented parallelepiped against the
106    detector plane.
107
108On introducing "Orientational Distribution" in the angles, "distribution of theta" and "distribution of phi" parameters will
109appear. These are actually rotations about axes $\delta_1$ and $\delta_2$ of the parallelepiped, perpendicular to the $a$ x $c$ and $b$ x $c$ faces.
110(When $\theta = \phi = 0$ these are parallel to the $Y$ and $X$ axes of the instrument.) The third orientation distribution, in $\psi$, is
111about the $c$ axis of the particle, perpendicular to the $a$ x $b$ face. Some experimentation may be required to
112understand the 2d patterns fully as discussed in :ref:`orientation` .
113
114For a given orientation of the parallelepiped, the 2D form factor is
115calculated as
116
117.. math::
118
119    P(q_x, q_y) = \left[\frac{\sin(\tfrac{1}{2}qA\cos\alpha)}{(\tfrac{1}{2}qA\cos\alpha)}\right]^2
120                  \left[\frac{\sin(\tfrac{1}{2}qB\cos\beta)}{(\tfrac{1}{2}qB\cos\beta)}\right]^2
121                  \left[\frac{\sin(\tfrac{1}{2}qC\cos\gamma)}{(\tfrac{1}{2}qC\cos\gamma)}\right]^2
122
123with
124
125.. math::
126
127    \cos\alpha &= \hat A \cdot \hat q, \\
128    \cos\beta  &= \hat B \cdot \hat q, \\
129    \cos\gamma &= \hat C \cdot \hat q
130
131and the scattering intensity as:
132
133.. math::
134
135    I(q_x, q_y) = \frac{\text{scale}}{V} V^2 \Delta\rho^2 P(q_x, q_y)
136            + \text{background}
137
138.. Comment by Miguel Gonzalez:
139   This reflects the logic of the code, as in parallelepiped.c the call
140   to _pkernel returns $P(q_x, q_y)$ and then this is multiplied by
141   $V^2 * (\Delta \rho)^2$. And finally outside parallelepiped.c it will be
142   multiplied by scale, normalized by $V$ and the background added. But
143   mathematically it makes more sense to write
144   $I(q_x, q_y) = \text{scale} V \Delta\rho^2 P(q_x, q_y) + \text{background}$,
145   with scale being the volume fraction.
146
147
148Validation
149----------
150
151Validation of the code was done by comparing the output of the 1D calculation
152to the angular average of the output of a 2D calculation over all possible
153angles.
154
155
156References
157----------
158
159P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
160
161R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
162
163Authorship and Verification
164----------------------------
165
166* **Author:** This model is based on form factor calculations implemented
167    in a c-library provided by the NIST Center for Neutron Research (Kline, 2006).
168* **Last Modified by:**  Paul Kienzle **Date:** April 05, 2017
169* **Last Reviewed by:**  Richard Heenan **Date:** April 06, 2017
170
171"""
172
173import numpy as np
174from numpy import pi, inf, sqrt, sin, cos
175
176name = "parallelepiped"
177title = "Rectangular parallelepiped with uniform scattering length density."
178description = """
179    I(q)= scale*V*(sld - sld_solvent)^2*P(q,alpha)+background
180        P(q,alpha) = integral from 0 to 1 of ...
181           phi(mu*sqrt(1-sigma^2),a) * S(mu*c*sigma/2)^2 * dsigma
182        with
183            phi(mu,a) = integral from 0 to 1 of ..
184            (S((mu/2)*cos(pi*u/2))*S((mu*a/2)*sin(pi*u/2)))^2 * du
185            S(x) = sin(x)/x
186            mu = q*B
187        V: Volume of the rectangular parallelepiped
188        alpha: angle between the long axis of the
189            parallelepiped and the q-vector for 1D
190"""
191category = "shape:parallelepiped"
192
193#             ["name", "units", default, [lower, upper], "type","description"],
194parameters = [["sld", "1e-6/Ang^2", 4, [-inf, inf], "sld",
195               "Parallelepiped scattering length density"],
196              ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld",
197               "Solvent scattering length density"],
198              ["length_a", "Ang", 35, [0, inf], "volume",
199               "Shorter side of the parallelepiped"],
200              ["length_b", "Ang", 75, [0, inf], "volume",
201               "Second side of the parallelepiped"],
202              ["length_c", "Ang", 400, [0, inf], "volume",
203               "Larger side of the parallelepiped"],
204              ["theta", "degrees", 60, [-360, 360], "orientation",
205               "c axis to beam angle"],
206              ["phi", "degrees", 60, [-360, 360], "orientation",
207               "rotation about beam"],
208              ["psi", "degrees", 60, [-360, 360], "orientation",
209               "rotation about c axis"],
210             ]
211
212source = ["lib/gauss76.c", "parallelepiped.c"]
213
214def ER(length_a, length_b, length_c):
215    """
216    Return effective radius (ER) for P(q)*S(q)
217    """
218    # now that axes can be in any size order, need to sort a,b,c where a~b and c is either much smaller
219    # or much larger
220    abc = np.vstack((length_a, length_b, length_c))
221    abc = np.sort(abc, axis=0)
222    selector = (abc[1] - abc[0]) > (abc[2] - abc[1])
223    length = np.where(selector, abc[0], abc[2])
224    # surface average radius (rough approximation)
225    radius = np.sqrt(np.where(~selector, abc[0]*abc[1], abc[1]*abc[2]) / pi)
226
227    ddd = 0.75 * radius * (2*radius*length + (length + radius)*(length + pi*radius))
228    return 0.5 * (ddd) ** (1. / 3.)
229
230# VR defaults to 1.0
231
232
233def random():
234    import numpy as np
235    length = 10**np.random.uniform(1, 4.7, size=3)
236    pars = dict(
237        length_a=length[0],
238        length_b=length[1],
239        length_c=length[2],
240    )
241    return pars
242
243
244# parameters for demo
245demo = dict(scale=1, background=0,
246            sld=6.3, sld_solvent=1.0,
247            length_a=35, length_b=75, length_c=400,
248            theta=45, phi=30, psi=15,
249            length_a_pd=0.1, length_a_pd_n=10,
250            length_b_pd=0.1, length_b_pd_n=1,
251            length_c_pd=0.1, length_c_pd_n=1,
252            theta_pd=10, theta_pd_n=1,
253            phi_pd=10, phi_pd_n=1,
254            psi_pd=10, psi_pd_n=10)
255# rkh 7/4/17 add random unit test for 2d, note make all params different, 2d values not tested against other codes or models
256qx, qy = 0.2 * cos(pi/6.), 0.2 * sin(pi/6.)
257tests = [[{}, 0.2, 0.17758004974],
258         [{}, [0.2], [0.17758004974]],
259         [{'theta':10.0, 'phi':20.0}, (qx, qy), 0.0089517140475],
260         [{'theta':10.0, 'phi':20.0}, [(qx, qy)], [0.0089517140475]],
261        ]
262del qx, qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.