source: sasmodels/sasmodels/models/parallelepiped.py @ 40a87fa

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 40a87fa was 40a87fa, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

lint and latex cleanup

  • Property mode set to 100644
File size: 8.6 KB
Line 
1# parallelepiped model
2# Note: model title and parameter table are inserted automatically
3r"""
4The form factor is normalized by the particle volume.
5
6Definition
7----------
8
9| This model calculates the scattering from a rectangular parallelepiped
10| (:numref:`parallelepiped-image`).
11| If you need to apply polydispersity, see also :ref:`rectangular-prism`.
12
13.. _parallelepiped-image:
14
15.. figure:: img/parallelepiped_geometry.jpg
16
17   Parallelepiped with the corresponding definition of sides.
18
19.. note::
20
21   The edge of the solid must satisfy the condition that $A < B < C$.
22   This requirement is not enforced in the model, so it is up to the
23   user to check this during the analysis.
24
25The 1D scattering intensity $I(q)$ is calculated as:
26
27.. Comment by Miguel Gonzalez:
28   I am modifying the original text because I find the notation a little bit
29   confusing. I think that in most textbooks/papers, the notation P(Q) is
30   used for the form factor (adim, P(Q=0)=1), although F(q) seems also to
31   be used. But here (as for many other models), P(q) is used to represent
32   the scattering intensity (in cm-1 normally). It would be good to agree on
33   a common notation.
34
35.. math::
36
37    I(q) = \frac{\text{scale}}{V} (\Delta\rho \cdot V)^2
38           \left< P(q, \alpha) \right> + \text{background}
39
40where the volume $V = A B C$, the contrast is defined as
41$\Delta\rho = \rho_\text{p} - \rho_\text{solvent}$,
42$P(q, \alpha)$ is the form factor corresponding to a parallelepiped oriented
43at an angle $\alpha$ (angle between the long axis C and $\vec q$),
44and the averaging $\left<\ldots\right>$ is applied over all orientations.
45
46Assuming $a = A/B < 1$, $b = B /B = 1$, and $c = C/B > 1$, the
47form factor is given by (Mittelbach and Porod, 1961)
48
49.. math::
50
51    P(q, \alpha) = \int_0^1 \phi_Q\left(\mu \sqrt{1-\sigma^2},a\right)
52        \left[S(\mu c \sigma/2)\right]^2 d\sigma
53
54with
55
56.. math::
57
58    \phi_Q(\mu,a) &= \int_0^1
59        \left\{S\left[\frac{\mu}{2}\cos\left(\frac{\pi}{2}u\right)\right]
60               S\left[\frac{\mu a}{2}\sin\left(\frac{\pi}{2}u\right)\right]
61               \right\}^2 du
62
63    S(x) &= \frac{\sin x}{x}
64
65    \mu &= qB
66
67
68The scattering intensity per unit volume is returned in units of |cm^-1|.
69
70NB: The 2nd virial coefficient of the parallelepiped is calculated based on
71the averaged effective radius $(=\sqrt{A B / \pi})$ and
72length $(= C)$ values, and used as the effective radius for
73$S(q)$ when $P(q) \cdot S(q)$ is applied.
74
75To provide easy access to the orientation of the parallelepiped, we define
76three angles $\theta$, $\phi$ and $\Psi$. The definition of $\theta$ and
77$\phi$ is the same as for the cylinder model (see also figures below).
78
79.. Comment by Miguel Gonzalez:
80   The following text has been commented because I think there are two
81   mistakes. Psi is the rotational angle around C (but I cannot understand
82   what it means against the q plane) and psi=0 corresponds to a||x and b||y.
83
84   The angle $\Psi$ is the rotational angle around the $C$ axis against
85   the $q$ plane. For example, $\Psi = 0$ when the $B$ axis is parallel
86   to the $x$-axis of the detector.
87
88The angle $\Psi$ is the rotational angle around the $C$ axis.
89For $\theta = 0$ and $\phi = 0$, $\Psi = 0$ corresponds to the $B$ axis
90oriented parallel to the y-axis of the detector with $A$ along the z-axis.
91For other $\theta$, $\phi$ values, the parallelepiped has to be first rotated
92$\theta$ degrees around $z$ and $\phi$ degrees around $y$,
93before doing a final rotation of $\Psi$ degrees around the resulting $C$ to
94obtain the final orientation of the parallelepiped.
95For example, for $\theta = 0$ and $\phi = 90$, we have that $\Psi = 0$
96corresponds to $A$ along $x$ and $B$ along $y$,
97while for $\theta = 90$ and $\phi = 0$, $\Psi = 0$ corresponds to
98$A$ along $z$ and $B$ along $x$.
99
100.. _parallelepiped-orientation:
101
102.. figure:: img/parallelepiped_angle_definition.jpg
103
104    Definition of the angles for oriented parallelepipeds.
105
106.. figure:: img/parallelepiped_angle_projection.jpg
107
108    Examples of the angles for oriented parallelepipeds against the
109    detector plane.
110
111For a given orientation of the parallelepiped, the 2D form factor is
112calculated as
113
114.. math::
115
116    P(q_x, q_y) = \left[\frac{\sin(qA\cos\alpha/2)}{(qA\cos\alpha/2)}\right]^2
117                  \left[\frac{\sin(qB\cos\beta/2)}{(qB\cos\beta/2)}\right]^2
118                  \left[\frac{\sin(qC\cos\gamma/2)}{(qC\cos\gamma/2)}\right]^2
119
120with
121
122.. math::
123
124    \cos\alpha &= \hat A \cdot \hat q,
125
126    \cos\beta  &= \hat B \cdot \hat q,
127
128    \cos\gamma &= \hat C \cdot \hat q
129
130and the scattering intensity as:
131
132.. math::
133
134    I(q_x, q_y) = \frac{\text{scale}}{V} V^2 \Delta\rho^2 P(q_x, q_y)
135            + \text{background}
136
137.. Comment by Miguel Gonzalez:
138   This reflects the logic of the code, as in parallelepiped.c the call
139   to _pkernel returns $P(q_x, q_y)$ and then this is multiplied by
140   $V^2 * (\Delta \rho)^2$. And finally outside parallelepiped.c it will be
141   multiplied by scale, normalized by $V$ and the background added. But
142   mathematically it makes more sense to write
143   $I(q_x, q_y) = \text{scale} V \Delta\rho^2 P(q_x, q_y) + \text{background}$,
144   with scale being the volume fraction.
145
146
147Validation
148----------
149
150Validation of the code was done by comparing the output of the 1D calculation
151to the angular average of the output of a 2D calculation over all possible
152angles.
153
154This model is based on form factor calculations implemented in a c-library
155provided by the NIST Center for Neutron Research (Kline, 2006).
156
157References
158----------
159
160P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
161
162R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
163"""
164
165import numpy as np
166from numpy import pi, inf, sqrt
167
168name = "parallelepiped"
169title = "Rectangular parallelepiped with uniform scattering length density."
170description = """
171    I(q)= scale*V*(sld - sld_solvent)^2*P(q,alpha)+background
172        P(q,alpha) = integral from 0 to 1 of ...
173           phi(mu*sqrt(1-sigma^2),a) * S(mu*c*sigma/2)^2 * dsigma
174        with
175            phi(mu,a) = integral from 0 to 1 of ..
176            (S((mu/2)*cos(pi*u/2))*S((mu*a/2)*sin(pi*u/2)))^2 * du
177            S(x) = sin(x)/x
178            mu = q*B
179        V: Volume of the rectangular parallelepiped
180        alpha: angle between the long axis of the
181            parallelepiped and the q-vector for 1D
182"""
183category = "shape:parallelepiped"
184
185#             ["name", "units", default, [lower, upper], "type","description"],
186parameters = [["sld", "1e-6/Ang^2", 4, [-inf, inf], "sld",
187               "Parallelepiped scattering length density"],
188              ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld",
189               "Solvent scattering length density"],
190              ["a_side", "Ang", 35, [0, inf], "volume",
191               "Shorter side of the parallelepiped"],
192              ["b_side", "Ang", 75, [0, inf], "volume",
193               "Second side of the parallelepiped"],
194              ["c_side", "Ang", 400, [0, inf], "volume",
195               "Larger side of the parallelepiped"],
196              ["theta", "degrees", 60, [-inf, inf], "orientation",
197               "In plane angle"],
198              ["phi", "degrees", 60, [-inf, inf], "orientation",
199               "Out of plane angle"],
200              ["psi", "degrees", 60, [-inf, inf], "orientation",
201               "Rotation angle around its own c axis against q plane"],
202             ]
203
204source = ["lib/gauss76.c", "parallelepiped.c"]
205
206def ER(a_side, b_side, c_side):
207    """
208        Return effective radius (ER) for P(q)*S(q)
209    """
210
211    # surface average radius (rough approximation)
212    surf_rad = sqrt(a_side * b_side / pi)
213
214    ddd = 0.75 * surf_rad * (2 * surf_rad * c_side + (c_side + surf_rad) * (c_side + pi * surf_rad))
215    return 0.5 * (ddd) ** (1. / 3.)
216
217# VR defaults to 1.0
218
219# parameters for demo
220demo = dict(scale=1, background=0,
221            sld=6.3e-6, sld_solvent=1.0e-6,
222            a_side=35, b_side=75, c_side=400,
223            theta=45, phi=30, psi=15,
224            a_side_pd=0.1, a_side_pd_n=10,
225            b_side_pd=0.1, b_side_pd_n=1,
226            c_side_pd=0.1, c_side_pd_n=1,
227            theta_pd=10, theta_pd_n=1,
228            phi_pd=10, phi_pd_n=1,
229            psi_pd=10, psi_pd_n=10)
230
231qx, qy = 0.2 * np.cos(2.5), 0.2 * np.sin(2.5)
232tests = [[{}, 0.2, 0.17758004974],
233         [{}, [0.2], [0.17758004974]],
234         [{'theta':10.0, 'phi':10.0}, (qx, qy), 0.00560296014],
235         [{'theta':10.0, 'phi':10.0}, [(qx, qy)], [0.00560296014]],
236        ]
237del qx, qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.