source: sasmodels/sasmodels/models/parallelepiped.py @ 5bc6d21

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 5bc6d21 was 5bc6d21, checked in by butler, 6 years ago

more standardization of text

moved validation to its own section (is that the standard?) and moved
parallelipiped frong stuff around so start with Definition as per
standard.

  • Property mode set to 100644
File size: 10.2 KB
RevLine 
[3330bb4]1# parallelepiped model
2# Note: model title and parameter table are inserted automatically
3r"""
4Definition
5----------
6
[3401a7a]7 This model calculates the scattering from a rectangular parallelepiped
[5bc373b]8 (:numref:`parallelepiped-image`).
[5bc6d21]9 If you need to apply polydispersity, see also :ref:`rectangular-prism`. For
10 information about polarised and magnetic scattering, see
11the :ref:`magnetism` documentation.
[3330bb4]12
13.. _parallelepiped-image:
14
[3fd0499]15
[3330bb4]16.. figure:: img/parallelepiped_geometry.jpg
17
18   Parallelepiped with the corresponding definition of sides.
19
[30b60d2]20The three dimensions of the parallelepiped (strictly here a cuboid) may be
21given in *any* size order. To avoid multiple fit solutions, especially
22with Monte-Carlo fit methods, it may be advisable to restrict their ranges.
23There may be a number of closely similar "best fits", so some trial and
24error, or fixing of some dimensions at expected values, may help.
[3330bb4]25
[5bc6d21]26The form factor is normalized by the particle volume and the 1D scattering
27intensity $I(q)$ is then calculated as:
[3330bb4]28
29.. Comment by Miguel Gonzalez:
30   I am modifying the original text because I find the notation a little bit
31   confusing. I think that in most textbooks/papers, the notation P(Q) is
32   used for the form factor (adim, P(Q=0)=1), although F(q) seems also to
33   be used. But here (as for many other models), P(q) is used to represent
34   the scattering intensity (in cm-1 normally). It would be good to agree on
35   a common notation.
36
37.. math::
38
39    I(q) = \frac{\text{scale}}{V} (\Delta\rho \cdot V)^2
[dbf1a60]40           \left< P(q, \alpha, \beta) \right> + \text{background}
[3330bb4]41
42where the volume $V = A B C$, the contrast is defined as
[dbf1a60]43$\Delta\rho = \rho_\text{p} - \rho_\text{solvent}$, $P(q, \alpha, \beta)$
44is the form factor corresponding to a parallelepiped oriented
45at an angle $\alpha$ (angle between the long axis C and $\vec q$), and $\beta$
46( the angle between the projection of the particle in the $xy$ detector plane
47and the $y$ axis) and the averaging $\left<\ldots\right>$ is applied over all
48orientations.
[3330bb4]49
50Assuming $a = A/B < 1$, $b = B /B = 1$, and $c = C/B > 1$, the
[dbf1a60]51form factor is given by (Mittelbach and Porod, 1961 [#Mittelbach]_)
[3330bb4]52
53.. math::
54
55    P(q, \alpha) = \int_0^1 \phi_Q\left(\mu \sqrt{1-\sigma^2},a\right)
56        \left[S(\mu c \sigma/2)\right]^2 d\sigma
57
58with
59
60.. math::
61
62    \phi_Q(\mu,a) &= \int_0^1
63        \left\{S\left[\frac{\mu}{2}\cos\left(\frac{\pi}{2}u\right)\right]
64               S\left[\frac{\mu a}{2}\sin\left(\frac{\pi}{2}u\right)\right]
[ca04add]65               \right\}^2 du \\
66    S(x) &= \frac{\sin x}{x} \\
[3330bb4]67    \mu &= qB
68
[dbf1a60]69where substitution of $\sigma = cos\alpha$ and $\beta = \pi/2 \ u$ have been
70applied.
[3330bb4]71
72NB: The 2nd virial coefficient of the parallelepiped is calculated based on
[afd4692]73the averaged effective radius, after appropriately sorting the three
74dimensions, to give an oblate or prolate particle, $(=\sqrt{AB/\pi})$ and
[3330bb4]75length $(= C)$ values, and used as the effective radius for
76$S(q)$ when $P(q) \cdot S(q)$ is applied.
77
[2d81cfe]78For 2d data the orientation of the particle is required, described using
79angles $\theta$, $\phi$ and $\Psi$ as in the diagrams below, for further details
[eda8b30]80of the calculation and angular dispersions see :ref:`orientation` .
[3330bb4]81
82.. Comment by Miguel Gonzalez:
83   The following text has been commented because I think there are two
84   mistakes. Psi is the rotational angle around C (but I cannot understand
85   what it means against the q plane) and psi=0 corresponds to a||x and b||y.
86
87   The angle $\Psi$ is the rotational angle around the $C$ axis against
88   the $q$ plane. For example, $\Psi = 0$ when the $B$ axis is parallel
89   to the $x$-axis of the detector.
90
91The angle $\Psi$ is the rotational angle around the $C$ axis.
92For $\theta = 0$ and $\phi = 0$, $\Psi = 0$ corresponds to the $B$ axis
[eda8b30]93oriented parallel to the y-axis of the detector with $A$ along the x-axis.
[3330bb4]94For other $\theta$, $\phi$ values, the parallelepiped has to be first rotated
[eda8b30]95$\theta$ degrees in the $z-x$ plane and then $\phi$ degrees around the $z$ axis,
96before doing a final rotation of $\Psi$ degrees around the resulting $C$ axis
97of the particle to obtain the final orientation of the parallelepiped.
[3330bb4]98
99.. _parallelepiped-orientation:
100
[3fd0499]101.. figure:: img/parallelepiped_angle_definition.png
[3330bb4]102
[afd4692]103    Definition of the angles for oriented parallelepiped, shown with $A<B<C$.
[3330bb4]104
[3fd0499]105.. figure:: img/parallelepiped_angle_projection.png
[3330bb4]106
[3fd0499]107    Examples of the angles for an oriented parallelepiped against the
[3330bb4]108    detector plane.
109
[2d81cfe]110On introducing "Orientational Distribution" in the angles, "distribution of
111theta" and "distribution of phi" parameters will appear. These are actually
112rotations about axes $\delta_1$ and $\delta_2$ of the parallelepiped,
113perpendicular to the $a$ x $c$ and $b$ x $c$ faces. (When $\theta = \phi = 0$
114these are parallel to the $Y$ and $X$ axes of the instrument.) The third
115orientation distribution, in $\psi$, is about the $c$ axis of the particle,
116perpendicular to the $a$ x $b$ face. Some experimentation may be required to
117understand the 2d patterns fully as discussed in :ref:`orientation` .
[9802ab3]118
[3330bb4]119For a given orientation of the parallelepiped, the 2D form factor is
120calculated as
121
122.. math::
123
[dbf1a60]124    P(q_x, q_y) = \left[\frac{\sin(\tfrac{1}{2}qA\cos\alpha)}{(\tfrac{1}
125                   {2}qA\cos\alpha)}\right]^2
126                  \left[\frac{\sin(\tfrac{1}{2}qB\cos\beta)}{(\tfrac{1}
127                   {2}qB\cos\beta)}\right]^2
128                  \left[\frac{\sin(\tfrac{1}{2}qC\cos\gamma)}{(\tfrac{1}
129                   {2}qC\cos\gamma)}\right]^2
[3330bb4]130
131with
132
133.. math::
134
[ca04add]135    \cos\alpha &= \hat A \cdot \hat q, \\
136    \cos\beta  &= \hat B \cdot \hat q, \\
[3330bb4]137    \cos\gamma &= \hat C \cdot \hat q
138
139and the scattering intensity as:
140
141.. math::
142
143    I(q_x, q_y) = \frac{\text{scale}}{V} V^2 \Delta\rho^2 P(q_x, q_y)
144            + \text{background}
145
146.. Comment by Miguel Gonzalez:
147   This reflects the logic of the code, as in parallelepiped.c the call
148   to _pkernel returns $P(q_x, q_y)$ and then this is multiplied by
149   $V^2 * (\Delta \rho)^2$. And finally outside parallelepiped.c it will be
150   multiplied by scale, normalized by $V$ and the background added. But
151   mathematically it makes more sense to write
152   $I(q_x, q_y) = \text{scale} V \Delta\rho^2 P(q_x, q_y) + \text{background}$,
153   with scale being the volume fraction.
154
155
156Validation
157----------
158
159Validation of the code was done by comparing the output of the 1D calculation
160to the angular average of the output of a 2D calculation over all possible
161angles.
162
163
164References
165----------
166
[dbf1a60]167.. [#Mittelbach] P Mittelbach and G Porod, *Acta Physica Austriaca*,
168   14 (1961) 185-211
169.. [#] R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
[3fd0499]170
171Authorship and Verification
172----------------------------
173
[ef07e95]174* **Author:** NIST IGOR/DANSE **Date:** pre 2010
[3fd0499]175* **Last Modified by:**  Paul Kienzle **Date:** April 05, 2017
176* **Last Reviewed by:**  Richard Heenan **Date:** April 06, 2017
[3330bb4]177"""
178
179import numpy as np
[3fd0499]180from numpy import pi, inf, sqrt, sin, cos
[3330bb4]181
182name = "parallelepiped"
183title = "Rectangular parallelepiped with uniform scattering length density."
184description = """
185    I(q)= scale*V*(sld - sld_solvent)^2*P(q,alpha)+background
186        P(q,alpha) = integral from 0 to 1 of ...
187           phi(mu*sqrt(1-sigma^2),a) * S(mu*c*sigma/2)^2 * dsigma
188        with
189            phi(mu,a) = integral from 0 to 1 of ..
190            (S((mu/2)*cos(pi*u/2))*S((mu*a/2)*sin(pi*u/2)))^2 * du
191            S(x) = sin(x)/x
192            mu = q*B
193        V: Volume of the rectangular parallelepiped
[3fd0499]194        alpha: angle between the long axis of the
[3330bb4]195            parallelepiped and the q-vector for 1D
196"""
197category = "shape:parallelepiped"
198
199#             ["name", "units", default, [lower, upper], "type","description"],
200parameters = [["sld", "1e-6/Ang^2", 4, [-inf, inf], "sld",
201               "Parallelepiped scattering length density"],
202              ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld",
203               "Solvent scattering length density"],
204              ["length_a", "Ang", 35, [0, inf], "volume",
205               "Shorter side of the parallelepiped"],
206              ["length_b", "Ang", 75, [0, inf], "volume",
207               "Second side of the parallelepiped"],
208              ["length_c", "Ang", 400, [0, inf], "volume",
209               "Larger side of the parallelepiped"],
[9b79f29]210              ["theta", "degrees", 60, [-360, 360], "orientation",
211               "c axis to beam angle"],
212              ["phi", "degrees", 60, [-360, 360], "orientation",
213               "rotation about beam"],
214              ["psi", "degrees", 60, [-360, 360], "orientation",
215               "rotation about c axis"],
[3330bb4]216             ]
217
218source = ["lib/gauss76.c", "parallelepiped.c"]
219
220def ER(length_a, length_b, length_c):
221    """
[3fd0499]222    Return effective radius (ER) for P(q)*S(q)
[3330bb4]223    """
[2d81cfe]224    # now that axes can be in any size order, need to sort a,b,c
225    # where a~b and c is either much smaller or much larger
[3fd0499]226    abc = np.vstack((length_a, length_b, length_c))
227    abc = np.sort(abc, axis=0)
228    selector = (abc[1] - abc[0]) > (abc[2] - abc[1])
229    length = np.where(selector, abc[0], abc[2])
[3330bb4]230    # surface average radius (rough approximation)
[2d81cfe]231    radius = sqrt(np.where(~selector, abc[0]*abc[1], abc[1]*abc[2]) / pi)
[3330bb4]232
[3fd0499]233    ddd = 0.75 * radius * (2*radius*length + (length + radius)*(length + pi*radius))
[3330bb4]234    return 0.5 * (ddd) ** (1. / 3.)
235
236# VR defaults to 1.0
237
[31df0c9]238
239def random():
[8f04da4]240    length = 10**np.random.uniform(1, 4.7, size=3)
[31df0c9]241    pars = dict(
[8f04da4]242        length_a=length[0],
243        length_b=length[1],
244        length_c=length[2],
[31df0c9]245    )
246    return pars
247
248
[3330bb4]249# parameters for demo
250demo = dict(scale=1, background=0,
251            sld=6.3, sld_solvent=1.0,
252            length_a=35, length_b=75, length_c=400,
253            theta=45, phi=30, psi=15,
254            length_a_pd=0.1, length_a_pd_n=10,
255            length_b_pd=0.1, length_b_pd_n=1,
256            length_c_pd=0.1, length_c_pd_n=1,
257            theta_pd=10, theta_pd_n=1,
258            phi_pd=10, phi_pd_n=1,
259            psi_pd=10, psi_pd_n=10)
[2d81cfe]260# rkh 7/4/17 add random unit test for 2d, note make all params different,
261# 2d values not tested against other codes or models
[3fd0499]262qx, qy = 0.2 * cos(pi/6.), 0.2 * sin(pi/6.)
[3330bb4]263tests = [[{}, 0.2, 0.17758004974],
264         [{}, [0.2], [0.17758004974]],
[3fd0499]265         [{'theta':10.0, 'phi':20.0}, (qx, qy), 0.0089517140475],
266         [{'theta':10.0, 'phi':20.0}, [(qx, qy)], [0.0089517140475]],
[3330bb4]267        ]
268del qx, qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.