source: sasmodels/sasmodels/models/parallelepiped.py @ 2d81cfe

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 2d81cfe was 2d81cfe, checked in by Paul Kienzle <pkienzle@…>, 6 years ago

lint

  • Property mode set to 100644
File size: 10.0 KB
RevLine 
[3330bb4]1# parallelepiped model
2# Note: model title and parameter table are inserted automatically
3r"""
4The form factor is normalized by the particle volume.
5For information about polarised and magnetic scattering, see
6the :ref:`magnetism` documentation.
7
8Definition
9----------
10
[3401a7a]11 This model calculates the scattering from a rectangular parallelepiped
12 (\:numref:`parallelepiped-image`\).
13 If you need to apply polydispersity, see also :ref:`rectangular-prism`.
[3330bb4]14
15.. _parallelepiped-image:
16
[3fd0499]17
[3330bb4]18.. figure:: img/parallelepiped_geometry.jpg
19
20   Parallelepiped with the corresponding definition of sides.
21
[30b60d2]22The three dimensions of the parallelepiped (strictly here a cuboid) may be
23given in *any* size order. To avoid multiple fit solutions, especially
24with Monte-Carlo fit methods, it may be advisable to restrict their ranges.
25There may be a number of closely similar "best fits", so some trial and
26error, or fixing of some dimensions at expected values, may help.
[3330bb4]27
28The 1D scattering intensity $I(q)$ is calculated as:
29
30.. Comment by Miguel Gonzalez:
31   I am modifying the original text because I find the notation a little bit
32   confusing. I think that in most textbooks/papers, the notation P(Q) is
33   used for the form factor (adim, P(Q=0)=1), although F(q) seems also to
34   be used. But here (as for many other models), P(q) is used to represent
35   the scattering intensity (in cm-1 normally). It would be good to agree on
36   a common notation.
37
38.. math::
39
40    I(q) = \frac{\text{scale}}{V} (\Delta\rho \cdot V)^2
41           \left< P(q, \alpha) \right> + \text{background}
42
43where the volume $V = A B C$, the contrast is defined as
44$\Delta\rho = \rho_\text{p} - \rho_\text{solvent}$,
45$P(q, \alpha)$ is the form factor corresponding to a parallelepiped oriented
46at an angle $\alpha$ (angle between the long axis C and $\vec q$),
47and the averaging $\left<\ldots\right>$ is applied over all orientations.
48
49Assuming $a = A/B < 1$, $b = B /B = 1$, and $c = C/B > 1$, the
50form factor is given by (Mittelbach and Porod, 1961)
51
52.. math::
53
54    P(q, \alpha) = \int_0^1 \phi_Q\left(\mu \sqrt{1-\sigma^2},a\right)
55        \left[S(\mu c \sigma/2)\right]^2 d\sigma
56
57with
58
59.. math::
60
61    \phi_Q(\mu,a) &= \int_0^1
62        \left\{S\left[\frac{\mu}{2}\cos\left(\frac{\pi}{2}u\right)\right]
63               S\left[\frac{\mu a}{2}\sin\left(\frac{\pi}{2}u\right)\right]
[ca04add]64               \right\}^2 du \\
65    S(x) &= \frac{\sin x}{x} \\
[3330bb4]66    \mu &= qB
67
68The scattering intensity per unit volume is returned in units of |cm^-1|.
69
70NB: The 2nd virial coefficient of the parallelepiped is calculated based on
[afd4692]71the averaged effective radius, after appropriately sorting the three
72dimensions, to give an oblate or prolate particle, $(=\sqrt{AB/\pi})$ and
[3330bb4]73length $(= C)$ values, and used as the effective radius for
74$S(q)$ when $P(q) \cdot S(q)$ is applied.
75
[2d81cfe]76For 2d data the orientation of the particle is required, described using
77angles $\theta$, $\phi$ and $\Psi$ as in the diagrams below, for further details
[eda8b30]78of the calculation and angular dispersions see :ref:`orientation` .
[3330bb4]79
80.. Comment by Miguel Gonzalez:
81   The following text has been commented because I think there are two
82   mistakes. Psi is the rotational angle around C (but I cannot understand
83   what it means against the q plane) and psi=0 corresponds to a||x and b||y.
84
85   The angle $\Psi$ is the rotational angle around the $C$ axis against
86   the $q$ plane. For example, $\Psi = 0$ when the $B$ axis is parallel
87   to the $x$-axis of the detector.
88
89The angle $\Psi$ is the rotational angle around the $C$ axis.
90For $\theta = 0$ and $\phi = 0$, $\Psi = 0$ corresponds to the $B$ axis
[eda8b30]91oriented parallel to the y-axis of the detector with $A$ along the x-axis.
[3330bb4]92For other $\theta$, $\phi$ values, the parallelepiped has to be first rotated
[eda8b30]93$\theta$ degrees in the $z-x$ plane and then $\phi$ degrees around the $z$ axis,
94before doing a final rotation of $\Psi$ degrees around the resulting $C$ axis
95of the particle to obtain the final orientation of the parallelepiped.
[3330bb4]96
97.. _parallelepiped-orientation:
98
[3fd0499]99.. figure:: img/parallelepiped_angle_definition.png
[3330bb4]100
[afd4692]101    Definition of the angles for oriented parallelepiped, shown with $A<B<C$.
[3330bb4]102
[3fd0499]103.. figure:: img/parallelepiped_angle_projection.png
[3330bb4]104
[3fd0499]105    Examples of the angles for an oriented parallelepiped against the
[3330bb4]106    detector plane.
107
[2d81cfe]108On introducing "Orientational Distribution" in the angles, "distribution of
109theta" and "distribution of phi" parameters will appear. These are actually
110rotations about axes $\delta_1$ and $\delta_2$ of the parallelepiped,
111perpendicular to the $a$ x $c$ and $b$ x $c$ faces. (When $\theta = \phi = 0$
112these are parallel to the $Y$ and $X$ axes of the instrument.) The third
113orientation distribution, in $\psi$, is about the $c$ axis of the particle,
114perpendicular to the $a$ x $b$ face. Some experimentation may be required to
115understand the 2d patterns fully as discussed in :ref:`orientation` .
[9802ab3]116
[3330bb4]117For a given orientation of the parallelepiped, the 2D form factor is
118calculated as
119
120.. math::
121
[3fd0499]122    P(q_x, q_y) = \left[\frac{\sin(\tfrac{1}{2}qA\cos\alpha)}{(\tfrac{1}{2}qA\cos\alpha)}\right]^2
123                  \left[\frac{\sin(\tfrac{1}{2}qB\cos\beta)}{(\tfrac{1}{2}qB\cos\beta)}\right]^2
124                  \left[\frac{\sin(\tfrac{1}{2}qC\cos\gamma)}{(\tfrac{1}{2}qC\cos\gamma)}\right]^2
[3330bb4]125
126with
127
128.. math::
129
[ca04add]130    \cos\alpha &= \hat A \cdot \hat q, \\
131    \cos\beta  &= \hat B \cdot \hat q, \\
[3330bb4]132    \cos\gamma &= \hat C \cdot \hat q
133
134and the scattering intensity as:
135
136.. math::
137
138    I(q_x, q_y) = \frac{\text{scale}}{V} V^2 \Delta\rho^2 P(q_x, q_y)
139            + \text{background}
140
141.. Comment by Miguel Gonzalez:
142   This reflects the logic of the code, as in parallelepiped.c the call
143   to _pkernel returns $P(q_x, q_y)$ and then this is multiplied by
144   $V^2 * (\Delta \rho)^2$. And finally outside parallelepiped.c it will be
145   multiplied by scale, normalized by $V$ and the background added. But
146   mathematically it makes more sense to write
147   $I(q_x, q_y) = \text{scale} V \Delta\rho^2 P(q_x, q_y) + \text{background}$,
148   with scale being the volume fraction.
149
150
151Validation
152----------
153
154Validation of the code was done by comparing the output of the 1D calculation
155to the angular average of the output of a 2D calculation over all possible
156angles.
157
158
159References
160----------
161
162P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211
163
164R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
[3fd0499]165
166Authorship and Verification
167----------------------------
168
[afd4692]169* **Author:** This model is based on form factor calculations implemented
[2d81cfe]170  in a c-library provided by the NIST Center for Neutron Research (Kline, 2006).
[3fd0499]171* **Last Modified by:**  Paul Kienzle **Date:** April 05, 2017
172* **Last Reviewed by:**  Richard Heenan **Date:** April 06, 2017
[3330bb4]173"""
174
175import numpy as np
[3fd0499]176from numpy import pi, inf, sqrt, sin, cos
[3330bb4]177
178name = "parallelepiped"
179title = "Rectangular parallelepiped with uniform scattering length density."
180description = """
181    I(q)= scale*V*(sld - sld_solvent)^2*P(q,alpha)+background
182        P(q,alpha) = integral from 0 to 1 of ...
183           phi(mu*sqrt(1-sigma^2),a) * S(mu*c*sigma/2)^2 * dsigma
184        with
185            phi(mu,a) = integral from 0 to 1 of ..
186            (S((mu/2)*cos(pi*u/2))*S((mu*a/2)*sin(pi*u/2)))^2 * du
187            S(x) = sin(x)/x
188            mu = q*B
189        V: Volume of the rectangular parallelepiped
[3fd0499]190        alpha: angle between the long axis of the
[3330bb4]191            parallelepiped and the q-vector for 1D
192"""
193category = "shape:parallelepiped"
194
195#             ["name", "units", default, [lower, upper], "type","description"],
196parameters = [["sld", "1e-6/Ang^2", 4, [-inf, inf], "sld",
197               "Parallelepiped scattering length density"],
198              ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld",
199               "Solvent scattering length density"],
200              ["length_a", "Ang", 35, [0, inf], "volume",
201               "Shorter side of the parallelepiped"],
202              ["length_b", "Ang", 75, [0, inf], "volume",
203               "Second side of the parallelepiped"],
204              ["length_c", "Ang", 400, [0, inf], "volume",
205               "Larger side of the parallelepiped"],
[9b79f29]206              ["theta", "degrees", 60, [-360, 360], "orientation",
207               "c axis to beam angle"],
208              ["phi", "degrees", 60, [-360, 360], "orientation",
209               "rotation about beam"],
210              ["psi", "degrees", 60, [-360, 360], "orientation",
211               "rotation about c axis"],
[3330bb4]212             ]
213
214source = ["lib/gauss76.c", "parallelepiped.c"]
215
216def ER(length_a, length_b, length_c):
217    """
[3fd0499]218    Return effective radius (ER) for P(q)*S(q)
[3330bb4]219    """
[2d81cfe]220    # now that axes can be in any size order, need to sort a,b,c
221    # where a~b and c is either much smaller or much larger
[3fd0499]222    abc = np.vstack((length_a, length_b, length_c))
223    abc = np.sort(abc, axis=0)
224    selector = (abc[1] - abc[0]) > (abc[2] - abc[1])
225    length = np.where(selector, abc[0], abc[2])
[3330bb4]226    # surface average radius (rough approximation)
[2d81cfe]227    radius = sqrt(np.where(~selector, abc[0]*abc[1], abc[1]*abc[2]) / pi)
[3330bb4]228
[3fd0499]229    ddd = 0.75 * radius * (2*radius*length + (length + radius)*(length + pi*radius))
[3330bb4]230    return 0.5 * (ddd) ** (1. / 3.)
231
232# VR defaults to 1.0
233
[31df0c9]234
235def random():
[8f04da4]236    length = 10**np.random.uniform(1, 4.7, size=3)
[31df0c9]237    pars = dict(
[8f04da4]238        length_a=length[0],
239        length_b=length[1],
240        length_c=length[2],
[31df0c9]241    )
242    return pars
243
244
[3330bb4]245# parameters for demo
246demo = dict(scale=1, background=0,
247            sld=6.3, sld_solvent=1.0,
248            length_a=35, length_b=75, length_c=400,
249            theta=45, phi=30, psi=15,
250            length_a_pd=0.1, length_a_pd_n=10,
251            length_b_pd=0.1, length_b_pd_n=1,
252            length_c_pd=0.1, length_c_pd_n=1,
253            theta_pd=10, theta_pd_n=1,
254            phi_pd=10, phi_pd_n=1,
255            psi_pd=10, psi_pd_n=10)
[2d81cfe]256# rkh 7/4/17 add random unit test for 2d, note make all params different,
257# 2d values not tested against other codes or models
[3fd0499]258qx, qy = 0.2 * cos(pi/6.), 0.2 * sin(pi/6.)
[3330bb4]259tests = [[{}, 0.2, 0.17758004974],
260         [{}, [0.2], [0.17758004974]],
[3fd0499]261         [{'theta':10.0, 'phi':20.0}, (qx, qy), 0.0089517140475],
262         [{'theta':10.0, 'phi':20.0}, [(qx, qy)], [0.0089517140475]],
[3330bb4]263        ]
264del qx, qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.