source: sasmodels/sasmodels/models/onion.py @ 0507e09

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 0507e09 was 0507e09, checked in by smk78, 5 years ago

Added link to source code to each model. Closes #883

  • Property mode set to 100644
File size: 11.8 KB
RevLine 
[fdb1487]1r"""
2This model provides the form factor, $P(q)$, for a multi-shell sphere where
[bccb40f]3the scattering length density (SLD) of each shell is described by an
[fdb1487]4exponential, linear, or constant function. The form factor is normalized by
5the volume of the sphere where the SLD is not identical to the SLD of the
6solvent. We currently provide up to 9 shells with this model.
7
8NB: *radius* represents the core radius $r_0$ and
9*thickness[k]* represents the thickness of the shell, $r_{k+1} - r_k$.
10
11Definition
12----------
13
14The 1D scattering intensity is calculated in the following way
15
16.. math::
17
[63c6a08]18    P(q) = [f]^2 / V_\text{particle}
[fdb1487]19
20where
21
22.. math::
[63c6a08]23    :nowrap:
[fdb1487]24
[63c6a08]25    \begin{align*}
26    f &= f_\text{core}
[fdb1487]27            + \left(\sum_{\text{shell}=1}^N f_\text{shell}\right)
28            + f_\text{solvent}
[63c6a08]29    \end{align*}
[fdb1487]30
31The shells are spherically symmetric with particle density $\rho(r)$ and
32constant SLD within the core and solvent, so
33
34.. math::
[63c6a08]35    :nowrap:
36
37    \begin{align*}
[fdb1487]38    f_\text{core}
39        &= 4\pi\int_0^{r_\text{core}} \rho_\text{core}
40            \frac{\sin(qr)}{qr}\, r^2\,\mathrm{d}r
41        &= 3\rho_\text{core} V(r_\text{core})
42            \frac{j_1(qr_\text{core})}{qr_\text{core}} \\
43    f_\text{shell}
44        &= 4\pi\int_{r_{\text{shell}-1}}^{r_\text{shell}}
45            \rho_\text{shell}(r)\frac{\sin(qr)}{qr}\,r^2\,\mathrm{d}r \\
46    f_\text{solvent}
47        &= 4\pi\int_{r_N}^\infty
48            \rho_\text{solvent}\frac{\sin(qr)}{qr}\,r^2\,\mathrm{d}r
49        &= -3\rho_\text{solvent}V(r_N)\frac{j_1(q r_N)}{q r_N}
[63c6a08]50    \end{align*}
[fdb1487]51
52where the spherical bessel function $j_1$ is
53
54.. math::
55
56    j_1(x) = \frac{\sin(x)}{x^2} - \frac{\cos(x)}{x}
57
58and the volume is $V(r) = \frac{4\pi}{3}r^3$. The volume of the particle
59is determined by the radius of the outer shell, so $V_\text{particle} = V(r_N)$.
60
61Now lets consider the SLD of a shell defined by
62
63.. math::
64
65    \rho_\text{shell}(r) = \begin{cases}
66        B\exp\left(A(r-r_{\text{shell}-1})/\Delta t_\text{shell}\right)
67            + C & \mbox{for } A \neq 0 \\
68        \rho_\text{in} = \text{constant} & \mbox{for } A = 0
69    \end{cases}
70
71An example of a possible SLD profile is shown below where
72$\rho_\text{in}$ and $\Delta t_\text{shell}$ stand for the
73SLD of the inner side of the $k^\text{th}$ shell and the
74thickness of the $k^\text{th}$ shell in the equation above, respectively.
75
[785cbec]76For $A > 0$,
[fdb1487]77
78.. math::
79
80    f_\text{shell} &= 4 \pi \int_{r_{\text{shell}-1}}^{r_\text{shell}}
81        \left[ B\exp
82            \left(A (r - r_{\text{shell}-1}) / \Delta t_\text{shell} \right) + C
[ca04add]83        \right] \frac{\sin(qr)}{qr}\,r^2\,\mathrm{d}r \\
[fdb1487]84    &= 3BV(r_\text{shell}) e^A h(\alpha_\text{out},\beta_\text{out})
85        - 3BV(r_{\text{shell}-1}) h(\alpha_\text{in},\beta_\text{in})
86        + 3CV(r_{\text{shell}}) \frac{j_1(\beta_\text{out})}{\beta_\text{out}}
87        - 3CV(r_{\text{shell}-1}) \frac{j_1(\beta_\text{in})}{\beta_\text{in}}
88
89for
90
91.. math::
92    :nowrap:
93
94    \begin{align*}
95    B&=\frac{\rho_\text{out} - \rho_\text{in}}{e^A-1}
[ca04add]96         & C &= \frac{\rho_\text{in}e^A - \rho_\text{out}}{e^A-1} \\
[fdb1487]97    \alpha_\text{in} &= A\frac{r_{\text{shell}-1}}{\Delta t_\text{shell}}
[ca04add]98         & \alpha_\text{out} &= A\frac{r_\text{shell}}{\Delta t_\text{shell}} \\
[fdb1487]99    \beta_\text{in} &= qr_{\text{shell}-1}
[ca04add]100        & \beta_\text{out} &= qr_\text{shell} \\
[fdb1487]101    \end{align*}
102
103where $h$ is
104
105 .. math::
106
107    h(x,y) = \frac{x \sin(y) - y\cos(y)}{(x^2+y^2)y}
108               - \frac{(x^2-y^2)\sin(y) - 2xy\cos(y)}{(x^2+y^2)^2y}
109
110
111For $A \sim 0$, e.g., $A = -0.0001$, this function converges to that of the
112linear SLD profile with
113$\rho_\text{shell}(r) \approx A(r-r_{\text{shell}-1})/\Delta t_\text{shell})+B$,
114so this case is equivalent to
115
116.. math::
[63c6a08]117    :nowrap:
[fdb1487]118
[63c6a08]119    \begin{align*}
[fdb1487]120    f_\text{shell}
121    &=
122      3 V(r_\text{shell}) \frac{\Delta\rho_\text{shell}}{\Delta t_\text{shell}}
123        \left[\frac{
124                2 \cos(qr_\text{out})
125                    + qr_\text{out} \sin(qr_\text{out})
126            }{
127                (qr_\text{out})^4
128            }\right] \\
129     &{}
130      -3 V(r_\text{shell}) \frac{\Delta\rho_\text{shell}}{\Delta t_\text{shell}}
131        \left[\frac{
132                    2\cos(qr_\text{in})
133                +qr_\text{in}\sin(qr_\text{in})
134            }{
135                (qr_\text{in})^4
136            }\right] \\
137    &{}
138      +3\rho_\text{out}V(r_\text{shell}) \frac{j_1(qr_\text{out})}{qr_\text{out}}
139      -3\rho_\text{in}V(r_{\text{shell}-1}) \frac{j_1(qr_\text{in})}{qr_\text{in}}
[63c6a08]140    \end{align*}
[fdb1487]141
142For $A = 0$, the exponential function has no dependence on the radius (so that
[bccb40f]143$\rho_\text{out}$ is ignored in this case) and becomes flat. We set the constant
[fdb1487]144to $\rho_\text{in}$ for convenience, and thus the form factor contributed by
145the shells is
146
147.. math::
148
149    f_\text{shell} =
150        3\rho_\text{in}V(r_\text{shell})
151           \frac{j_1(qr_\text{out})}{qr_\text{out}}
152        - 3\rho_\text{in}V(r_{\text{shell}-1})
153            \frac{j_1(qr_\text{in})}{qr_\text{in}}
154
[5111921]155.. figure:: img/onion_geometry.png
[fdb1487]156
157    Example of an onion model profile.
158
159The 2D scattering intensity is the same as $P(q)$ above, regardless of the
160orientation of the $q$ vector which is defined as
161
162.. math::
163
164    q = \sqrt{q_x^2 + q_y^2}
165
166NB: The outer most radius is used as the effective radius for $S(q)$
167when $P(q) S(q)$ is applied.
168
169References
170----------
171
[0507e09]172.. [#] L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and Neutron Scattering*, Plenum Press, New York, 1987.
173
174Source
175------
176
177`onion.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/onion.py>`_
178
179`onion.c <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/onion.c>`_
180
181Authorship and Verification
182----------------------------
183
184* **Author:**
185* **Last Modified by:**
186* **Last Reviewed by:**
187* **Source added by :** Steve King **Date:** March 25, 2019
[fdb1487]188"""
189
190#
191# Give a polynomial $\rho(r) = Ar^3 + Br^2 + Cr + D$ for density,
192#
193# .. math::
194#
195#    f = 4 \pi \int_a^b \rho(r) \sin(qr)/(qr) \mathrm{d}r  = h(b) - h(a)
196#
197# where
198#
199# .. math::
200#
201#    h(r) = \frac{4 \pi}{q^6}\left[
202#        (q^3(4Ar^3 + 3Br^2 + 2Cr + D) - q(24Ar + 6B)) \sin(qr)
203#      - (q^4(Ar^4 + Br^3 + Cr^2 + Dr) - q^2(12Ar^2 + 6Br + 2C) + 24A) \cos(qr)
204#    \right]
205#
206# Use the monotonic spline to get the polynomial coefficients for each shell.
207#
208# Order 0
209#
210# .. math::
211#
212#    h(r) = \frac{4 \pi}{q^3} \left[
213#       - \cos(qr) (Ar) q
214#       + \sin(qr) (A)
215#    \right]
216#
217# Order 1
218#
219# .. math::
220#
221#   h(r) = \frac{4 \pi}{q^4} \left[
222#       - \cos(qr) ( Ar^2 + Br) q^2
223#       + \sin(qr) ( Ar   + B ) q
224#       + \cos(qr) (2A        )
225#   \right]
226#
227# Order 2
228#
229# .. math::
230#  h(r) = \frac{4 \pi}{q^5} \left[
231#        - \cos(qr) ( Ar^3 +  Br^2 + Cr) q^3
232#        + \sin(qr) (3Ar^2 + 2Br   + C ) q^2
233#        + \cos(qr) (6Ar   + 2B        ) q
234#        - \sin(qr) (6A                )
235#
236# Order 3
237#
238#    h(r) = \frac{4 \pi}{q^6}\left[
239#      - \cos(qr) (  Ar^4 +  Br^3 +  Cr^2 + Dr) q^4
240#      + \sin(qr) ( 4Ar^3 + 3Br^2 + 2Cr   + D ) q^3
241#      + \cos(qr) (12Ar^2 + 6Br   + 2C        ) q^2
242#      - \sin(qr) (24Ar   + 6B                ) q
243#      - \cos(qr) (24A                        )
244#    \right]
245#
246# Order p
247#
248#    h(r) = \frac{4 \pi}{q^{2}}
249#      \sum_{k=0}^p -\frac{d^k\cos(qr)}{dr^k} \frac{d^k r\rho(r)}{dr^k} (qr)^{-k}
250#
251# Given the equation
252#
253#    f = sum_(k=0)^(n-1) h_k(r_(k+1)) - h_k(r_k)
254#
255# we can rearrange the terms so that
256#
257#    f = sum_0^(n-1) h_k(r_(k+1)) - sum_0^(n-1) h_k(r_k)
258#      = sum_1^n h_(k-1)(r_k) - sum_0^(n-1) h_k(r_k)
259#      = h_(n-1)(r_n) - h_0(r_0) + sum_1^(n-1) [h_(k-1)(r_k) - h_k(r_k)]
260#      = h_(n-1)(r_n) - h_0(r_0) - sum_1^(n-1) h_(Delta k)(r_k)
261#
262# where
263#
264#    h_(Delta k)(r) = h(Delta rho_k, r)
265#
266# for
267#
268#    Delta rho_k = (A_k-A_(k-1)) r^p + (B_k-B_(k-1)) r^(p-1) + ...
269#
270# Using l'H\^opital's Rule 6 times on the order 3 polynomial,
271#
272#   lim_(q->0) h(r) = (140D r^3 + 180C r^4 + 144B r^5 + 120A r^6)/720
273#
274
275from __future__ import division
276
[2d81cfe]277from math import fabs, exp, expm1
278
[fdb1487]279import numpy as np
280from numpy import inf, nan
281
282name = "onion"
283title = "Onion shell model with constant, linear or exponential density"
284
285description = """\
286Form factor of mutishells normalized by the volume. Here each shell is
287described by an exponential function;
288
289        I) For A_shell != 0,
290                f(r) = B*exp(A_shell*(r-r_in)/thick_shell)+C
291        where
292                B=(sld_out-sld_in)/(exp(A_shell)-1)
293                C=sld_in-B.
294        Note that in the above case, the function becomes a linear function
295        as A_shell --> 0+ or 0-.
296
297        II) For the exact point of A_shell == 0,
298                f(r) = sld_in ,i.e., it crosses over flat function
299        Note that the 'sld_out' becaomes NULL in this case.
300
301        background:background,
302        rad_core0: radius of sphere(core)
303        thick_shell#:the thickness of the shell#
304        sld_core0: the SLD of the sphere
305        sld_solv: the SLD of the solvent
306        sld_shell: the SLD of the shell#
307        A_shell#: the coefficient in the exponential function
308"""
309
310category = "shape:sphere"
311
[b0696e1]312# TODO: n is a volume parameter that is not polydisperse
[fdb1487]313
[40a87fa]314# pylint: disable=bad-whitespace, line-too-long
315#   ["name", "units", default, [lower, upper], "type","description"],
316parameters = [
317    ["sld_core", "1e-6/Ang^2", 1.0, [-inf, inf], "sld", "Core scattering length density"],
318    ["radius_core", "Ang", 200., [0, inf], "volume", "Radius of the core"],
319    ["sld_solvent", "1e-6/Ang^2", 6.4, [-inf, inf], "sld", "Solvent scattering length density"],
320    ["n_shells", "", 1, [0, 10], "volume", "number of shells"],
321    ["sld_in[n_shells]", "1e-6/Ang^2", 1.7, [-inf, inf], "sld", "scattering length density at the inner radius of shell k"],
322    ["sld_out[n_shells]", "1e-6/Ang^2", 2.0, [-inf, inf], "sld", "scattering length density at the outer radius of shell k"],
323    ["thickness[n_shells]", "Ang", 40., [0, inf], "volume", "Thickness of shell k"],
324    ["A[n_shells]", "", 1.0, [-inf, inf], "", "Decay rate of shell k"],
325    ]
326# pylint: enable=bad-whitespace, line-too-long
[fdb1487]327
[925ad6e]328source = ["lib/sas_3j1x_x.c", "onion.c"]
[a0494e9]329single = False
[71b751d]330have_Fq = True
[d277229]331effective_radius_type = ["outer radius"]
[6a8fdfe]332
[ce896fd]333profile_axes = ['Radius (A)', 'SLD (1e-6/A^2)']
[e187b25]334def profile(sld_core, radius_core, sld_solvent, n_shells,
335            sld_in, sld_out, thickness, A):
[fdb1487]336    """
[fa5fd8d]337    Returns shape profile with x=radius, y=SLD.
[fdb1487]338    """
[768c0c4]339    n_shells = int(n_shells+0.5)
[e187b25]340    total_radius = 1.25*(sum(thickness[:n_shells]) + radius_core + 1)
[40a87fa]341    dz = total_radius/400  # 400 points for a smooth plot
[fdb1487]342
[40a87fa]343    z = []
[e187b25]344    rho = []
[fdb1487]345
346    # add in the core
[40a87fa]347    z.append(0)
[e187b25]348    rho.append(sld_core)
[40a87fa]349    z.append(radius_core)
[e187b25]350    rho.append(sld_core)
[fdb1487]351
352    # add in the shells
[3cd1001]353    for k in range(int(n_shells)):
[fdb1487]354        # Left side of each shells
[40a87fa]355        z_current = z[-1]
356        z.append(z_current)
[e187b25]357        rho.append(sld_in[k])
[fdb1487]358
359        if fabs(A[k]) < 1.0e-16:
360            # flat shell
[40a87fa]361            z.append(z_current + thickness[k])
[bccb40f]362            rho.append(sld_in[k])
[fdb1487]363        else:
364            # exponential shell
365            # num_steps must be at least 1, so use floor()+1 rather than ceil
366            # to protect against a thickness0.
[40a87fa]367            num_steps = np.floor(thickness[k]/dz) + 1
[e187b25]368            slope = (sld_out[k] - sld_in[k]) / expm1(A[k])
369            const = (sld_in[k] - slope)
[40a87fa]370            for z_shell in np.linspace(0, thickness[k], num_steps+1):
371                z.append(z_current+z_shell)
372                rho.append(slope*exp(A[k]*z_shell/thickness[k]) + const)
[2d81cfe]373
[fdb1487]374    # add in the solvent
[40a87fa]375    z.append(z[-1])
[e187b25]376    rho.append(sld_solvent)
[40a87fa]377    z.append(total_radius)
[e187b25]378    rho.append(sld_solvent)
[fdb1487]379
[40a87fa]380    return np.asarray(z), np.asarray(rho)
[fdb1487]381
[b297ba9]382# TODO: no random parameter function for onion model
383
[fdb1487]384demo = {
[ce896fd]385    "sld_solvent": 2.2,
386    "sld_core": 1.0,
[9762341]387    "radius_core": 100,
[a0494e9]388    "n_shells": 4,
[ce896fd]389    "sld_in": [0.5, 1.5, 0.9, 2.0],
390    "sld_out": [nan, 0.9, 1.2, 1.6],
[fdb1487]391    "thickness": [50, 75, 150, 75],
392    "A": [0, -1, 1e-4, 1],
393    # Could also specify them individually as
[a0494e9]394    # "A1": 0, "A2": -1, "A3": 1e-4, "A4": 1,
[9762341]395    #"radius_core_pd_n": 10,
396    #"radius_core_pd": 0.4,
[d119f34]397    #"thickness4_pd_n": 10,
398    #"thickness4_pd": 0.4,
[fdb1487]399    }
Note: See TracBrowser for help on using the repository browser.