r""" Lorentz (Ornstein-Zernicke Model) Definition ---------- The Ornstein-Zernicke model is defined by .. math:: I(q)=\frac{\text{scale}}{1+(qL)^2}+\text{background} The parameter $L$ is the screening length *cor_length*. For 2D data the scattering intensity is calculated in the same way as 1D, where the $q$ vector is defined as .. math:: q=\sqrt{q_x^2 + q_y^2} References ---------- .. [#] L.S. Qrnstein and F. Zernike, *Proc. Acad. Sci. Amsterdam* 17, 793 (1914), and *Z. Phys.* 19, 134 (1918), and 27, 761 {1926); referred to as QZ. Authorship and Verification ---------------------------- * **Author:** * **Last Modified by:** * **Last Reviewed by:** """ import numpy as np from numpy import inf name = "lorentz" title = "Ornstein-Zernicke correlation length model" description = """ Model that evaluates a Lorentz (Ornstein-Zernicke) model. I(q) = scale/( 1 + (q*L)^2 ) + bkd The model has three parameters: length = screening Length scale = scale factor background = incoherent background """ category = "shape-independent" # ["name", "units", default, [lower, upper], "type","description"], parameters = [["cor_length", "Ang", 50.0, [0, inf], "", "Screening length"],] Iq = """ double denominator = 1 + (q*cor_length)*(q*cor_length); return 1/denominator; """ def random(): """Return a random parameter set for the model.""" pars = dict( #background=0, scale=10**np.random.uniform(1, 4), cor_length=10**np.random.uniform(0, 3), ) return pars # parameters for demo demo = dict(scale=1.0, background=0.0, cor_length=50.0) # parameters for unit tests tests = [[{'cor_length': 250}, 0.01, 0.138931]]