# rectangular_prism model # Note: model title and parameter table are inserted automatically r""" This model provides the form factor, $P(q)$, for a hollow rectangular prism with infinitely thin walls. It computes only the 1D scattering, not the 2D. Definition ---------- The 1D scattering intensity for this model is calculated according to the equations given by Nayuk and Huber (Nayuk, 2012). Assuming a hollow parallelepiped with infinitely thin walls, edge lengths $A \le B \le C$ and presenting an orientation with respect to the scattering vector given by $\theta$ and $\phi$, where $\theta$ is the angle between the $z$ axis and the longest axis of the parallelepiped $C$, and $\phi$ is the angle between the scattering vector (lying in the $xy$ plane) and the $y$ axis, the form factor is given by .. math:: P(q) = \frac{1}{V^2} \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} [A_L(q)+A_T(q)]^2 \sin\theta\,d\theta\,d\phi where .. math:: V &= 2AB + 2AC + 2BC \\ A_L(q) &= 8 \times \frac{ \sin \left( \tfrac{1}{2} q A \sin\phi \sin\theta \right) \sin \left( \tfrac{1}{2} q B \cos\phi \sin\theta \right) \cos \left( \tfrac{1}{2} q C \cos\theta \right) }{q^2 \, \sin^2\theta \, \sin\phi \cos\phi} \\ A_T(q) &= A_F(q) \times \frac{2\,\sin \left( \tfrac{1}{2} q C \cos\theta \right)}{q\,\cos\theta} and .. math:: A_F(q) = 4 \frac{ \cos \left( \tfrac{1}{2} q A \sin\phi \sin\theta \right) \sin \left( \tfrac{1}{2} q B \cos\phi \sin\theta \right) } {q \, \cos\phi \, \sin\theta} + 4 \frac{ \sin \left( \tfrac{1}{2} q A \sin\phi \sin\theta \right) \cos \left( \tfrac{1}{2} q B \cos\phi \sin\theta \right) } {q \, \sin\phi \, \sin\theta} The 1D scattering intensity is then calculated as .. math:: I(q) = \text{scale} \times V \times (\rho_\text{p} - \rho_\text{solvent})^2 \times P(q) where $V$ is the volume of the rectangular prism, $\rho_\text{p}$ is the scattering length of the parallelepiped, $\rho_\text{solvent}$ is the scattering length of the solvent, and (if the data are in absolute units) *scale* represents the volume fraction (which is unitless). **The 2D scattering intensity is not computed by this model.** Validation ---------- Validation of the code was conducted by qualitatively comparing the output of the 1D model to the curves shown in (Nayuk, 2012). References ---------- R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854 """ import numpy as np from numpy import pi, inf, sqrt name = "hollow_rectangular_prism_thin_walls" title = "Hollow rectangular parallelepiped with thin walls." description = """ I(q)= scale*V*(sld - sld_solvent)^2*P(q)+background with P(q) being the form factor corresponding to a hollow rectangular parallelepiped with infinitely thin walls. """ category = "shape:parallelepiped" # ["name", "units", default, [lower, upper], "type","description"], parameters = [["sld", "1e-6/Ang^2", 6.3, [-inf, inf], "sld", "Parallelepiped scattering length density"], ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld", "Solvent scattering length density"], ["length_a", "Ang", 35, [0, inf], "volume", "Shorter side of the parallelepiped"], ["b2a_ratio", "Ang", 1, [0, inf], "volume", "Ratio sides b/a"], ["c2a_ratio", "Ang", 1, [0, inf], "volume", "Ratio sides c/a"], ] source = ["lib/gauss76.c", "hollow_rectangular_prism_thin_walls.c"] def ER(length_a, b2a_ratio, c2a_ratio): """ Return equivalent radius (ER) """ b_side = length_a * b2a_ratio c_side = length_a * c2a_ratio # surface average radius (rough approximation) surf_rad = sqrt(length_a * b_side / pi) ddd = 0.75 * surf_rad * (2 * surf_rad * c_side + (c_side + surf_rad) * (c_side + pi * surf_rad)) return 0.5 * (ddd) ** (1. / 3.) def VR(length_a, b2a_ratio, c2a_ratio): """ Return shell volume and total volume """ b_side = length_a * b2a_ratio c_side = length_a * c2a_ratio vol_total = length_a * b_side * c_side vol_shell = 2.0 * (length_a*b_side + length_a*c_side + b_side*c_side) return vol_shell, vol_total def random(): a, b, c = 10**np.random.uniform(1, 4.7, size=3) pars = dict( length_a=a, b2a_ratio=b/a, c2a_ratio=c/a, ) return pars # parameters for demo demo = dict(scale=1, background=0, sld=6.3, sld_solvent=1.0, length_a=35, b2a_ratio=1, c2a_ratio=1, length_a_pd=0.1, length_a_pd_n=10, b2a_ratio_pd=0.1, b2a_ratio_pd_n=1, c2a_ratio_pd=0.1, c2a_ratio_pd_n=1) tests = [[{}, 0.2, 0.837719188592], [{}, [0.2], [0.837719188592]], ]