source: sasmodels/sasmodels/models/hollow_rectangular_prism_thin_walls.py @ 0159b5e

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 0159b5e was 0159b5e, checked in by Torin Cooper-Bennun <torin.cooper-bennun@…>, 6 years ago

Merge branch 'master' into beta_approx

  • Property mode set to 100644
File size: 5.1 KB
Line 
1# rectangular_prism model
2# Note: model title and parameter table are inserted automatically
3r"""
4Definition
5----------
6
7
8This model provides the form factor, $P(q)$, for a hollow rectangular
9prism with infinitely thin walls. It computes only the 1D scattering, not the 2D.
10The 1D scattering intensity for this model is calculated according to the
11equations given by Nayuk and Huber\ [#Nayuk2012]_.
12
13Assuming a hollow parallelepiped with infinitely thin walls, edge lengths
14$A \le B \le C$ and presenting an orientation with respect to the
15scattering vector given by $\theta$ and $\phi$, where $\theta$ is the angle
16between the $z$ axis and the longest axis of the parallelepiped $C$, and
17$\phi$ is the angle between the scattering vector (lying in the $xy$ plane)
18and the $y$ axis, the form factor is given by
19
20.. math::
21
22    P(q) = \frac{1}{V^2} \frac{2}{\pi} \int_0^{\frac{\pi}{2}}
23           \int_0^{\frac{\pi}{2}} [A_L(q)+A_T(q)]^2 \sin\theta\,d\theta\,d\phi
24
25where
26
27.. math::
28
29    V &= 2AB + 2AC + 2BC \\
30    A_L(q) &=  8 \times \frac{
31            \sin \left( \tfrac{1}{2} q A \sin\phi \sin\theta \right)
32            \sin \left( \tfrac{1}{2} q B \cos\phi \sin\theta \right)
33            \cos \left( \tfrac{1}{2} q C \cos\theta \right)
34        }{q^2 \, \sin^2\theta \, \sin\phi \cos\phi} \\
35    A_T(q) &=  A_F(q) \times
36      \frac{2\,\sin \left( \tfrac{1}{2} q C \cos\theta \right)}{q\,\cos\theta}
37
38and
39
40.. math::
41
42  A_F(q) =  4 \frac{ \cos \left( \tfrac{1}{2} q A \sin\phi \sin\theta \right)
43                       \sin \left( \tfrac{1}{2} q B \cos\phi \sin\theta \right) }
44                     {q \, \cos\phi \, \sin\theta} +
45              4 \frac{ \sin \left( \tfrac{1}{2} q A \sin\phi \sin\theta \right)
46                       \cos \left( \tfrac{1}{2} q B \cos\phi \sin\theta \right) }
47                     {q \, \sin\phi \, \sin\theta}
48
49The 1D scattering intensity is then calculated as
50
51.. math::
52
53  I(q) = \text{scale} \times V \times (\rho_\text{p} - \rho_\text{solvent})^2 \times P(q)
54
55where $V$ is the surface area of the rectangular prism, $\rho_\text{p}$
56is the scattering length density of the parallelepiped, $\rho_\text{solvent}$
57is the scattering length density of the solvent, and (if the data are in
58absolute units) *scale* is related to the total surface area.
59
60**The 2D scattering intensity is not computed by this model.**
61
62
63Validation
64----------
65
66Validation of the code was conducted  by qualitatively comparing the output
67of the 1D model to the curves shown in (Nayuk, 2012\ [#Nayuk2012]_).
68
69
70References
71----------
72
73.. [#Nayuk2012] R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
74
75
76Authorship and Verification
77----------------------------
78
79* **Author:** Miguel Gonzales **Date:** February 26, 2016
80* **Last Modified by:** Paul Kienzle **Date:** October 15, 2016
81* **Last Reviewed by:** Paul Butler **Date:** September 07, 2018
82"""
83
84import numpy as np
85from numpy import pi, inf, sqrt
86
87name = "hollow_rectangular_prism_thin_walls"
88title = "Hollow rectangular parallelepiped with thin walls."
89description = """
90    I(q)= scale*V*(sld - sld_solvent)^2*P(q)+background
91        with P(q) being the form factor corresponding to a hollow rectangular
92        parallelepiped with infinitely thin walls.
93"""
94category = "shape:parallelepiped"
95
96#             ["name", "units", default, [lower, upper], "type","description"],
97parameters = [["sld", "1e-6/Ang^2", 6.3, [-inf, inf], "sld",
98               "Parallelepiped scattering length density"],
99              ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld",
100               "Solvent scattering length density"],
101              ["length_a", "Ang", 35, [0, inf], "volume",
102               "Shorter side of the parallelepiped"],
103              ["b2a_ratio", "Ang", 1, [0, inf], "volume",
104               "Ratio sides b/a"],
105              ["c2a_ratio", "Ang", 1, [0, inf], "volume",
106               "Ratio sides c/a"],
107             ]
108
109source = ["lib/gauss76.c", "hollow_rectangular_prism_thin_walls.c"]
110have_Fq = True
111
112def ER(length_a, b2a_ratio, c2a_ratio):
113    """
114        Return equivalent radius (ER)
115    """
116    b_side = length_a * b2a_ratio
117    c_side = length_a * c2a_ratio
118
119    # surface average radius (rough approximation)
120    surf_rad = sqrt(length_a * b_side / pi)
121
122    ddd = 0.75 * surf_rad * (2 * surf_rad * c_side + (c_side + surf_rad) * (c_side + pi * surf_rad))
123    return 0.5 * (ddd) ** (1. / 3.)
124
125def VR(length_a, b2a_ratio, c2a_ratio):
126    """
127        Return shell volume and total volume
128    """
129    b_side = length_a * b2a_ratio
130    c_side = length_a * c2a_ratio
131    vol_total = length_a * b_side * c_side
132    vol_shell = 2.0 * (length_a*b_side + length_a*c_side + b_side*c_side)
133    return vol_shell, vol_total
134
135
136def random():
137    a, b, c = 10**np.random.uniform(1, 4.7, size=3)
138    pars = dict(
139        length_a=a,
140        b2a_ratio=b/a,
141        c2a_ratio=c/a,
142    )
143    return pars
144
145
146# parameters for demo
147demo = dict(scale=1, background=0,
148            sld=6.3, sld_solvent=1.0,
149            length_a=35, b2a_ratio=1, c2a_ratio=1,
150            length_a_pd=0.1, length_a_pd_n=10,
151            b2a_ratio_pd=0.1, b2a_ratio_pd_n=1,
152            c2a_ratio_pd=0.1, c2a_ratio_pd_n=1)
153
154tests = [[{}, 0.2, 0.837719188592],
155         [{}, [0.2], [0.837719188592]],
156        ]
Note: See TracBrowser for help on using the repository browser.