source: sasmodels/sasmodels/models/hollow_rectangular_prism_thin_walls.c @ 6d5601c

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 6d5601c was 6d5601c, checked in by Paul Kienzle <pkienzle@…>, 5 years ago

use 4/3 pi constant when computing R_eff

  • Property mode set to 100644
File size: 4.1 KB
Line 
1static double
2shell_volume(double length_a, double b2a_ratio, double c2a_ratio)
3{
4    const double length_b = length_a * b2a_ratio;
5    const double length_c = length_a * c2a_ratio;
6    const double shell_volume = 2.0 * (length_a*length_b + length_a*length_c + length_b*length_c);
7    return shell_volume;
8}
9
10static double
11form_volume(double length_a, double b2a_ratio, double c2a_ratio)
12{
13    const double length_b = length_a * b2a_ratio;
14    const double length_c = length_a * c2a_ratio;
15    const double form_volume = length_a * length_b * length_c;
16    return form_volume;
17}
18
19static double
20effective_radius(int mode, double length_a, double b2a_ratio, double c2a_ratio)
21{
22    switch (mode) {
23    case 1: // equivalent sphere
24        return cbrt(cube(length_a)*b2a_ratio*c2a_ratio/M_4PI_3);
25    case 2: // half length_a
26        return 0.5 * length_a;
27    case 3: // half length_b
28        return 0.5 * length_a*b2a_ratio;
29    case 4: // half length_c
30        return 0.5 * length_a*c2a_ratio;
31    case 5: // equivalent outer circular cross-section
32        return length_a*sqrt(b2a_ratio/M_PI);
33    case 6: // half ab diagonal
34        return 0.5*sqrt(square(length_a) * (1.0 + square(b2a_ratio)));
35    case 7: // half diagonal
36        return 0.5*sqrt(square(length_a) * (1.0 + square(b2a_ratio) + square(c2a_ratio)));
37    }
38}
39
40static void
41Fq(double q,
42    double *F1,
43    double *F2,
44    double sld,
45    double solvent_sld,
46    double length_a,
47    double b2a_ratio,
48    double c2a_ratio)
49{
50    const double length_b = length_a * b2a_ratio;
51    const double length_c = length_a * c2a_ratio;
52    const double a_half = 0.5 * length_a;
53    const double b_half = 0.5 * length_b;
54    const double c_half = 0.5 * length_c;
55
56   //Integration limits to use in Gaussian quadrature
57    const double v1a = 0.0;
58    const double v1b = M_PI_2;  //theta integration limits
59    const double v2a = 0.0;
60    const double v2b = M_PI_2;  //phi integration limits
61
62    double outer_sum_F1 = 0.0;
63    double outer_sum_F2 = 0.0;
64    for(int i=0; i<GAUSS_N; i++) {
65        const double theta = 0.5 * ( GAUSS_Z[i]*(v1b-v1a) + v1a + v1b );
66
67        double sin_theta, cos_theta;
68        double sin_c, cos_c;
69        SINCOS(theta, sin_theta, cos_theta);
70        SINCOS(q*c_half*cos_theta, sin_c, cos_c);
71
72        // To check potential problems if denominator goes to zero here !!!
73        const double termAL_theta = 8.0 * cos_c / (q*q*sin_theta*sin_theta);
74        const double termAT_theta = 8.0 * sin_c / (q*q*sin_theta*cos_theta);
75
76        double inner_sum_F1 = 0.0;
77        double inner_sum_F2 = 0.0;
78        for(int j=0; j<GAUSS_N; j++) {
79            const double phi = 0.5 * ( GAUSS_Z[j]*(v2b-v2a) + v2a + v2b );
80
81            double sin_phi, cos_phi;
82            double sin_a, cos_a;
83            double sin_b, cos_b;
84            SINCOS(phi, sin_phi, cos_phi);
85            SINCOS(q*a_half*sin_theta*sin_phi, sin_a, cos_a);
86            SINCOS(q*b_half*sin_theta*cos_phi, sin_b, cos_b);
87
88            // Amplitude AL from eqn. (7c)
89            const double AL = termAL_theta
90                * sin_a*sin_b / (sin_phi*cos_phi);
91
92            // Amplitude AT from eqn. (9)
93            const double AT = termAT_theta
94                * ( cos_a*sin_b/cos_phi + cos_b*sin_a/sin_phi );
95
96            inner_sum_F1 += GAUSS_W[j] * (AL+AT);
97            inner_sum_F2 += GAUSS_W[j] * square(AL+AT);
98        }
99
100        inner_sum_F1 *= 0.5 * (v2b-v2a);
101        inner_sum_F2 *= 0.5 * (v2b-v2a);
102        outer_sum_F1 += GAUSS_W[i] * inner_sum_F1 * sin_theta;
103        outer_sum_F2 += GAUSS_W[i] * inner_sum_F2 * sin_theta;
104    }
105
106    outer_sum_F1 *= 0.5*(v1b-v1a);
107    outer_sum_F2 *= 0.5*(v1b-v1a);
108
109    // Normalize as in Eqn. (15) without the volume factor (as cancels with (V*DelRho)^2 normalization)
110    // The factor 2 is due to the different theta integration limit (pi/2 instead of pi)
111    const double form_avg = outer_sum_F1/M_PI_2;
112    const double form_squared_avg = outer_sum_F2/M_PI_2;
113
114    // Multiply by contrast^2. Factor corresponding to volume^2 cancels with previous normalization.
115    const double contrast = sld - solvent_sld;
116
117    // Convert from [1e-12 A-1] to [cm-1]
118    *F1 = 1e-2 * contrast * form_avg;
119    *F2 = 1e-4 * contrast * contrast * form_squared_avg;
120}
Note: See TracBrowser for help on using the repository browser.