double form_volume(double length_a, double b2a_ratio, double c2a_ratio, double thickness); double Iq(double q, double sld, double solvent_sld, double length_a, double b2a_ratio, double c2a_ratio, double thickness); double Iqxy(double qx, double qy, double sld, double solvent_sld, double length_a, double b2a_ratio, double c2a_ratio, double thickness); double form_volume(double length_a, double b2a_ratio, double c2a_ratio, double thickness) { double b_side = length_a * b2a_ratio; double c_side = length_a * c2a_ratio; double a_core = length_a - 2.0*thickness; double b_core = b_side - 2.0*thickness; double c_core = c_side - 2.0*thickness; double vol_core = a_core * b_core * c_core; double vol_total = length_a * b_side * c_side; double vol_shell = vol_total - vol_core; return vol_shell; } double Iq(double q, double sld, double solvent_sld, double length_a, double b2a_ratio, double c2a_ratio, double thickness) { double termA1, termA2, termB1, termB2, termC1, termC2; double b_side = length_a * b2a_ratio; double c_side = length_a * c2a_ratio; double a_half = 0.5 * length_a; double b_half = 0.5 * b_side; double c_half = 0.5 * c_side; //Integration limits to use in Gaussian quadrature double v1a = 0.0; double v1b = 0.5 * M_PI; //theta integration limits double v2a = 0.0; double v2b = 0.5 * M_PI; //phi integration limits //Order of integration int nordi=76; int nordj=76; double sumi = 0.0; for(int i=0; i 1.e-16) {termC1 = sin(arg)/arg;} else {termC1 = 1.0;} arg = q * (c_half-thickness)*cos(theta); if (fabs(arg) > 1.e-16) {termC2 = sin(arg)/arg;} else {termC2 = 1.0;} double sumj = 0.0; for(int j=0; j 1.e-16) {termA1 = sin(arg)/arg;} else {termA1 = 1.0;} arg = q * (a_half-thickness) * sin(theta) * sin(phi); if (fabs(arg) > 1.e-16) {termA2 = sin(arg)/arg;} else {termA2 = 1.0;} arg = q * b_half * sin(theta) * cos(phi); if (fabs(arg) > 1.e-16) {termB1 = sin(arg)/arg;} else {termB1 = 1.0;} arg = q * (b_half-thickness) * sin(theta) * cos(phi); if (fabs(arg) > 1.e-16) {termB2 = sin(arg)/arg;} else {termB2 = 1.0;} double AP1 = (length_a*b_side*c_side) * termA1 * termB1 * termC1; double AP2 = 8.0 * (a_half-thickness) * (b_half-thickness) * (c_half-thickness) * termA2 * termB2 * termC2; double AP = AP1 - AP2; sumj += Gauss76Wt[j] * (AP*AP); } sumj = 0.5 * (v2b-v2a) * sumj; sumi += Gauss76Wt[i] * sumj * sin(theta); } double answer = 0.5*(v1b-v1a)*sumi; // Normalize as in Eqn. (15) without the volume factor (as cancels with (V*DelRho)^2 normalization) // The factor 2 is due to the different theta integration limit (pi/2 instead of pi) answer *= (2.0/M_PI); // Multiply by contrast^2. Factor corresponding to volume^2 cancels with previous normalization. answer *= (sld-solvent_sld)*(sld-solvent_sld); // Convert from [1e-12 A-1] to [cm-1] answer *= 1.0e-4; return answer; } double Iqxy(double qx, double qy, double sld, double solvent_sld, double length_a, double b2a_ratio, double c2a_ratio, double thickness) { double q = sqrt(qx*qx + qy*qy); double intensity = Iq(q, sld, solvent_sld, length_a, b2a_ratio, c2a_ratio, thickness); return intensity; }