double form_volume(double length_a, double b2a_ratio, double c2a_ratio, double thickness); double Iq(double q, double sld, double solvent_sld, double length_a, double b2a_ratio, double c2a_ratio, double thickness); double form_volume(double length_a, double b2a_ratio, double c2a_ratio, double thickness) { double length_b = length_a * b2a_ratio; double length_c = length_a * c2a_ratio; double a_core = length_a - 2.0*thickness; double b_core = length_b - 2.0*thickness; double c_core = length_c - 2.0*thickness; double vol_core = a_core * b_core * c_core; double vol_total = length_a * length_b * length_c; double vol_shell = vol_total - vol_core; return vol_shell; } double Iq(double q, double sld, double solvent_sld, double length_a, double b2a_ratio, double c2a_ratio, double thickness) { double termA1, termA2, termB1, termB2, termC1, termC2; double length_b = length_a * b2a_ratio; double length_c = length_a * c2a_ratio; double a_half = 0.5 * length_a; double b_half = 0.5 * length_b; double c_half = 0.5 * length_c; double vol_total = length_a * length_b * length_c; double vol_core = 8.0 * (a_half-thickness) * (b_half-thickness) * (c_half-thickness); //Integration limits to use in Gaussian quadrature double v1a = 0.0; double v1b = M_PI_2; //theta integration limits double v2a = 0.0; double v2b = M_PI_2; //phi integration limits double outer_sum = 0.0; for(int i=0; i<76; i++) { double theta = 0.5 * ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b ); double termC1 = sinc(q * c_half * cos(theta)); double termC2 = sinc(q * (c_half-thickness)*cos(theta)); double inner_sum = 0.0; for(int j=0; j<76; j++) { double phi = 0.5 * ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b ); // Amplitude AP from eqn. (13), rewritten to avoid round-off effects when arg=0 termA1 = sinc(q * a_half * sin(theta) * sin(phi)); termA2 = sinc(q * (a_half-thickness) * sin(theta) * sin(phi)); termB1 = sinc(q * b_half * sin(theta) * cos(phi)); termB2 = sinc(q * (b_half-thickness) * sin(theta) * cos(phi)); double AP1 = vol_total * termA1 * termB1 * termC1; double AP2 = vol_core * termA2 * termB2 * termC2; inner_sum += Gauss76Wt[j] * square(AP1-AP2); } inner_sum = 0.5 * (v2b-v2a) * inner_sum; outer_sum += Gauss76Wt[i] * inner_sum * sin(theta); } double answer = 0.5*(v1b-v1a)*outer_sum; // Normalize as in Eqn. (15) without the volume factor (as cancels with (V*DelRho)^2 normalization) // The factor 2 is due to the different theta integration limit (pi/2 instead of pi) answer /= M_PI_2; // Multiply by contrast^2. Factor corresponding to volume^2 cancels with previous normalization. answer *= square(sld-solvent_sld); // Convert from [1e-12 A-1] to [cm-1] answer *= 1.0e-4; return answer; }