double form_volume(double length_a, double b2a_ratio, double c2a_ratio, double thickness); double Iq(double q, double sld, double solvent_sld, double length_a, double b2a_ratio, double c2a_ratio, double thickness); double form_volume(double length_a, double b2a_ratio, double c2a_ratio, double thickness) { double length_b = length_a * b2a_ratio; double length_c = length_a * c2a_ratio; double a_core = length_a - 2.0*thickness; double b_core = length_b - 2.0*thickness; double c_core = length_c - 2.0*thickness; double vol_core = a_core * b_core * c_core; double vol_total = length_a * length_b * length_c; double vol_shell = vol_total - vol_core; return vol_shell; } double Iq(double q, double sld, double solvent_sld, double length_a, double b2a_ratio, double c2a_ratio, double thickness) { const double length_b = length_a * b2a_ratio; const double length_c = length_a * c2a_ratio; const double a_half = 0.5 * length_a; const double b_half = 0.5 * length_b; const double c_half = 0.5 * length_c; const double vol_total = length_a * length_b * length_c; const double vol_core = 8.0 * (a_half-thickness) * (b_half-thickness) * (c_half-thickness); //Integration limits to use in Gaussian quadrature const double v1a = 0.0; const double v1b = M_PI_2; //theta integration limits const double v2a = 0.0; const double v2b = M_PI_2; //phi integration limits double outer_sum = 0.0; for(int i=0; i<76; i++) { const double theta = 0.5 * ( Gauss76Z[i]*(v1b-v1a) + v1a + v1b ); double sin_theta, cos_theta; SINCOS(theta, sin_theta, cos_theta); const double termC1 = sas_sinx_x(q * c_half * cos(theta)); const double termC2 = sas_sinx_x(q * (c_half-thickness)*cos(theta)); double inner_sum = 0.0; for(int j=0; j<76; j++) { const double phi = 0.5 * ( Gauss76Z[j]*(v2b-v2a) + v2a + v2b ); double sin_phi, cos_phi; SINCOS(phi, sin_phi, cos_phi); // Amplitude AP from eqn. (13), rewritten to avoid round-off effects when arg=0 const double termA1 = sas_sinx_x(q * a_half * sin_theta * sin_phi); const double termA2 = sas_sinx_x(q * (a_half-thickness) * sin_theta * sin_phi); const double termB1 = sas_sinx_x(q * b_half * sin_theta * cos_phi); const double termB2 = sas_sinx_x(q * (b_half-thickness) * sin_theta * cos_phi); const double AP1 = vol_total * termA1 * termB1 * termC1; const double AP2 = vol_core * termA2 * termB2 * termC2; inner_sum += Gauss76Wt[j] * square(AP1-AP2); } inner_sum *= 0.5 * (v2b-v2a); outer_sum += Gauss76Wt[i] * inner_sum * sin(theta); } outer_sum *= 0.5*(v1b-v1a); // Normalize as in Eqn. (15) without the volume factor (as cancels with (V*DelRho)^2 normalization) // The factor 2 is due to the different theta integration limit (pi/2 instead of pi) const double form = outer_sum/M_PI_2; // Multiply by contrast^2. Factor corresponding to volume^2 cancels with previous normalization. const double delrho = sld - solvent_sld; // Convert from [1e-12 A-1] to [cm-1] return 1.0e-4 * delrho * delrho * form; } double Iqxy(double qa, double qb, double qc, double sld, double solvent_sld, double length_a, double b2a_ratio, double c2a_ratio, double thickness) { const double length_b = length_a * b2a_ratio; const double length_c = length_a * c2a_ratio; const double a_half = 0.5 * length_a; const double b_half = 0.5 * length_b; const double c_half = 0.5 * length_c; const double vol_total = length_a * length_b * length_c; const double vol_core = 8.0 * (a_half-thickness) * (b_half-thickness) * (c_half-thickness); // Amplitude AP from eqn. (13) const double termA1 = sas_sinx_x(qa * a_half); const double termA2 = sas_sinx_x(qa * (a_half-thickness)); const double termB1 = sas_sinx_x(qb * b_half); const double termB2 = sas_sinx_x(qb * (b_half-thickness)); const double termC1 = sas_sinx_x(qc * c_half); const double termC2 = sas_sinx_x(qc * (c_half-thickness)); const double AP1 = vol_total * termA1 * termB1 * termC1; const double AP2 = vol_core * termA2 * termB2 * termC2; // Multiply by contrast^2. Factor corresponding to volume^2 cancels with previous normalization. const double delrho = sld - solvent_sld; // Convert from [1e-12 A-1] to [cm-1] return 1.0e-4 * square(delrho * (AP1-AP2)); }