1 | r""" |
---|
2 | Definition |
---|
3 | ---------- |
---|
4 | |
---|
5 | This model provides the form factor, $P(q)$, for a monodisperse hollow right |
---|
6 | angle circular cylinder (rigid tube) where the The inside and outside of the |
---|
7 | hollow cylinder are assumed to have the same SLD and the form factor is thus |
---|
8 | normalized by the volume of the tube (i.e. not by the total cylinder volume). |
---|
9 | |
---|
10 | .. math:: |
---|
11 | |
---|
12 | P(q) = \text{scale} \left<F^2\right>/V_\text{shell} + \text{background} |
---|
13 | |
---|
14 | where the averaging $\left<\ldots\right>$ is applied only for the 1D |
---|
15 | calculation. If Intensity is given on an absolute scale, the scale factor here |
---|
16 | is the volume fraction of the shell. This differs from |
---|
17 | the :ref:`core-shell-cylinder` in that, in that case, scale is the volume |
---|
18 | fraction of the entire cylinder (core+shell). The application might be for a |
---|
19 | bilayer which wraps into a hollow tube and the volume fraction of material is |
---|
20 | all in the shell, whereas the :ref:`core-shell-cylinder` model might be used for |
---|
21 | a cylindrical micelle where the tails in the core have a different SLD than the |
---|
22 | headgroups (in the shell) and the volume fraction of material comes fromm the |
---|
23 | whole cyclinder. NOTE: the hollow_cylinder represents a tube whereas the |
---|
24 | core_shell_cylinder includes a shell layer covering the ends (end caps) as well. |
---|
25 | |
---|
26 | |
---|
27 | The 1D scattering intensity is calculated in the following way (Guinier, 1955) |
---|
28 | |
---|
29 | .. math:: |
---|
30 | |
---|
31 | P(q) &= (\text{scale})V_\text{shell}\Delta\rho^2 |
---|
32 | \int_0^{1}\Psi^2 |
---|
33 | \left[q_z, R_\text{outer}(1-x^2)^{1/2}, |
---|
34 | R_\text{core}(1-x^2)^{1/2}\right] |
---|
35 | \left[\frac{\sin(qHx)}{qHx}\right]^2 dx \\ |
---|
36 | \Psi[q,y,z] &= \frac{1}{1-\gamma^2} |
---|
37 | \left[ \Lambda(qy) - \gamma^2\Lambda(qz) \right] \\ |
---|
38 | \Lambda(a) &= 2 J_1(a) / a \\ |
---|
39 | \gamma &= R_\text{core} / R_\text{outer} \\ |
---|
40 | V_\text{shell} &= \pi \left(R_\text{outer}^2 - R_\text{core}^2 \right)L \\ |
---|
41 | J_1(x) &= (\sin(x)-x\cdot \cos(x)) / x^2 |
---|
42 | |
---|
43 | where *scale* is a scale factor, $H = L/2$ and $J_1$ is the 1st order |
---|
44 | Bessel function. |
---|
45 | |
---|
46 | **NB**: The 2nd virial coefficient of the cylinder is calculated |
---|
47 | based on the outer radius and full length, which give an the effective radius |
---|
48 | for structure factor $S(q)$ when $P(q) \cdot S(q)$ is applied. |
---|
49 | |
---|
50 | In the parameters,the *radius* is $R_\text{core}$ while *thickness* |
---|
51 | is $R_\text{outer} - R_\text{core}$. |
---|
52 | |
---|
53 | To provide easy access to the orientation of the core-shell cylinder, we define |
---|
54 | the axis of the cylinder using two angles $\theta$ and $\phi$ |
---|
55 | (see :ref:`cylinder model <cylinder-angle-definition>`). |
---|
56 | |
---|
57 | References |
---|
58 | ---------- |
---|
59 | |
---|
60 | .. [#] L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and |
---|
61 | Neutron Scattering*, Plenum Press, New York, (1987) |
---|
62 | L. Onsager, Ann. New York Acad. Sci. 51, 627-659 (1949). |
---|
63 | |
---|
64 | Authorship and Verification |
---|
65 | ---------------------------- |
---|
66 | |
---|
67 | * **Author:** NIST IGOR/DANSE **Date:** pre 2010 |
---|
68 | * **Last Modified by:** Paul Butler **Date:** September 06, 2018 |
---|
69 | (corrected VR calculation) |
---|
70 | * **Last Reviewed by:** Paul Butler **Date:** September 06, 2018 |
---|
71 | """ |
---|
72 | from __future__ import division |
---|
73 | |
---|
74 | import numpy as np |
---|
75 | from numpy import pi, inf, sin, cos |
---|
76 | |
---|
77 | name = "hollow_cylinder" |
---|
78 | title = "" |
---|
79 | description = """ |
---|
80 | P(q) = scale*<f*f>/Vol + background, where f is the scattering amplitude. |
---|
81 | radius = the radius of core |
---|
82 | thickness = the thickness of shell |
---|
83 | length = the total length of the cylinder |
---|
84 | sld = SLD of the shell |
---|
85 | sld_solvent = SLD of the solvent |
---|
86 | background = incoherent background |
---|
87 | """ |
---|
88 | category = "shape:cylinder" |
---|
89 | # pylint: disable=bad-whitespace, line-too-long |
---|
90 | # ["name", "units", default, [lower, upper], "type","description"], |
---|
91 | parameters = [ |
---|
92 | ["radius", "Ang", 20.0, [0, inf], "volume", "Cylinder core radius"], |
---|
93 | ["thickness", "Ang", 10.0, [0, inf], "volume", "Cylinder wall thickness"], |
---|
94 | ["length", "Ang", 400.0, [0, inf], "volume", "Cylinder total length"], |
---|
95 | ["sld", "1e-6/Ang^2", 6.3, [-inf, inf], "sld", "Cylinder sld"], |
---|
96 | ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld", "Solvent sld"], |
---|
97 | ["theta", "degrees", 90, [-360, 360], "orientation", "Cylinder axis to beam angle"], |
---|
98 | ["phi", "degrees", 0, [-360, 360], "orientation", "Rotation about beam"], |
---|
99 | ] |
---|
100 | # pylint: enable=bad-whitespace, line-too-long |
---|
101 | |
---|
102 | source = ["lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c", "hollow_cylinder.c"] |
---|
103 | have_Fq = True |
---|
104 | effective_radius_type = [ |
---|
105 | "excluded volume", "equivalent outer volume sphere", "outer radius", "half length", |
---|
106 | "half outer min dimension", "half outer max dimension", |
---|
107 | "half outer diagonal", |
---|
108 | ] |
---|
109 | |
---|
110 | def random(): |
---|
111 | length = 10**np.random.uniform(1, 4.7) |
---|
112 | outer_radius = 10**np.random.uniform(1, 4.7) |
---|
113 | # Use a distribution with a preference for thin shell or thin core |
---|
114 | # Avoid core,shell radii < 1 |
---|
115 | thickness = np.random.beta(0.5, 0.5)*(outer_radius-2) + 1 |
---|
116 | radius = outer_radius - thickness |
---|
117 | pars = dict( |
---|
118 | length=length, |
---|
119 | radius=radius, |
---|
120 | thickness=thickness, |
---|
121 | ) |
---|
122 | return pars |
---|
123 | |
---|
124 | # parameters for demo |
---|
125 | demo = dict(scale=1.0, background=0.0, length=400.0, radius=20.0, |
---|
126 | thickness=10, sld=6.3, sld_solvent=1, theta=90, phi=0, |
---|
127 | thickness_pd=0.2, thickness_pd_n=9, |
---|
128 | length_pd=.2, length_pd_n=10, |
---|
129 | radius_pd=.2, radius_pd_n=9, |
---|
130 | theta_pd=10, theta_pd_n=5, |
---|
131 | ) |
---|
132 | q = 0.1 |
---|
133 | # april 6 2017, rkh added a 2d unit test, assume correct! |
---|
134 | qx = q*cos(pi/6.0) |
---|
135 | qy = q*sin(pi/6.0) |
---|
136 | radius = parameters[0][2] |
---|
137 | thickness = parameters[1][2] |
---|
138 | length = parameters[2][2] |
---|
139 | # Parameters for unit tests |
---|
140 | tests = [ |
---|
141 | [{}, 0.00005, 1764.926], |
---|
142 | [{}, 0.1, None, None, |
---|
143 | 0.5*(0.75*(radius+thickness)*(2.0*(radius+thickness)*length + ((radius+thickness) + length)*(pi*(radius+thickness) + length)))**(1./3.), # R_eff from excluded volume |
---|
144 | pi*((radius+thickness)**2-radius**2)*length, # shell volume |
---|
145 | (radius+thickness)**2/((radius+thickness)**2 - radius**2), # form:shell ratio |
---|
146 | ], |
---|
147 | [{}, 0.001, 1756.76], |
---|
148 | [{}, (qx, qy), 2.36885476192], |
---|
149 | ] |
---|
150 | del qx, qy # not necessary to delete, but cleaner |
---|