double form_volume(double rpolar, double requatorial); double Iq(double q, double sld, double solvent_sld, double rpolar, double requatorial); double Iqxy(double qx, double qy, double sld, double solvent_sld, double rpolar, double requatorial, double theta, double phi); double _ellipsoid_kernel(double q, double rpolar, double requatorial, double sin_alpha); double _ellipsoid_kernel(double q, double rpolar, double requatorial, double sin_alpha) { double ratio = rpolar/requatorial; const double u = q*requatorial*sqrt(1.0 + sin_alpha*sin_alpha*(ratio*ratio - 1.0)); const double f = sph_j1c(u); return f*f; } double form_volume(double rpolar, double requatorial) { return M_4PI_3*rpolar*requatorial*requatorial; } double Iq(double q, double sld, double solvent_sld, double rpolar, double requatorial) { // translate a point in [-1,1] to a point in [0, 1] const double zm = 0.5; const double zb = 0.5; double total = 0.0; for (int i=0;i<76;i++) { //const double sin_alpha = (Gauss76Z[i]*(upper-lower) + upper + lower)/2; const double sin_alpha = Gauss76Z[i]*zm + zb; total += Gauss76Wt[i] * _ellipsoid_kernel(q, rpolar, requatorial, sin_alpha); } // translate dx in [-1,1] to dx in [lower,upper] const double form = total*zm; const double s = (sld - solvent_sld) * form_volume(rpolar, requatorial); return 1.0e-4 * s * s * form; } double Iqxy(double qx, double qy, double sld, double solvent_sld, double rpolar, double requatorial, double theta, double phi) { double sn, cn; const double q = sqrt(qx*qx + qy*qy); SINCOS(theta*M_PI_180, sn, cn); // TODO: check if this is actually sin(alpha), not cos(alpha) const double cos_alpha = cn*cos(phi*M_PI_180)*(qx/q) + sn*(qy/q); const double form = _ellipsoid_kernel(q, rpolar, requatorial, cos_alpha); const double s = (sld - solvent_sld) * form_volume(rpolar, requatorial); return 1.0e-4 * form * s * s; }