source: sasmodels/sasmodels/models/cylinder.py @ a503bfd

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since a503bfd was a503bfd, checked in by pkienzle, 9 years ago

move sasview→sasmodels conversion info to model definition

  • Property mode set to 100644
File size: 5.5 KB
Line 
1# cylinder model
2# Note: model title and parameter table are inserted automatically
3r"""
4The form factor is normalized by the particle volume.
5
6For information about polarised and magnetic scattering, click here_.
7
8Definition
9----------
10
11The output of the 2D scattering intensity function for oriented cylinders is
12given by (Guinier, 1955)
13
14.. math::
15
16    P(Q,\alpha) = {\text{scale} \over V} F^2(Q) + \text{background}
17
18where
19
20.. math::
21
22    F(Q) = 2 (\Delta \rho) V
23           {\sin \left(Q\tfrac12 L\cos\alpha \right)
24               \over Q\tfrac12 L \cos \alpha}
25           {J_1 \left(Q R \sin \alpha\right) \over Q R \sin \alpha}
26
27and $\alpha$ is the angle between the axis of the cylinder and $\vec q$, $V$
28is the volume of the cylinder, $L$ is the length of the cylinder, $R$ is the
29radius of the cylinder, and $\Delta\rho$ (contrast) is the scattering length
30density difference between the scatterer and the solvent. $J_1$ is the
31first order Bessel function.
32
33To provide easy access to the orientation of the cylinder, we define the
34axis of the cylinder using two angles $\theta$ and $\phi$. Those angles
35are defined in :num:`figure #cylinder-orientation`.
36
37.. _cylinder-orientation:
38
39.. figure:: img/orientation.jpg
40
41    Definition of the angles for oriented cylinders.
42
43.. figure:: img/orientation2.jpg
44
45    Examples of the angles for oriented pp against the detector plane.
46
47NB: The 2nd virial coefficient of the cylinder is calculated based on the
48radius and length values, and used as the effective radius for $S(Q)$
49when $P(Q) \cdot S(Q)$ is applied.
50
51The output of the 1D scattering intensity function for randomly oriented
52cylinders is then given by
53
54.. math::
55
56    P(Q) = {\text{scale} \over V}
57        \int_0^{\pi/2} F^2(Q,\alpha) \sin \alpha\ d\alpha + \text{background}
58
59The *theta* and *phi* parameters are not used for the 1D output. Our
60implementation of the scattering kernel and the 1D scattering intensity
61use the c-library from NIST.
62
63Validation
64----------
65
66Validation of our code was done by comparing the output of the 1D model
67to the output of the software provided by the NIST (Kline, 2006).
68:num:`Figure #cylinder-compare` shows a comparison of
69the 1D output of our model and the output of the NIST software.
70
71.. _cylinder-compare:
72
73.. figure:: img/cylinder_compare.jpg
74
75    Comparison of the SasView scattering intensity for a cylinder with the
76    output of the NIST SANS analysis software.
77    The parameters were set to: *scale* = 1.0, *radius* = 20 |Ang|,
78    *length* = 400 |Ang|, *contrast* = 3e-6 |Ang^-2|, and
79    *background* = 0.01 |cm^-1|.
80
81In general, averaging over a distribution of orientations is done by
82evaluating the following
83
84.. math::
85
86    P(Q) = \int_0^{\pi/2} d\phi
87        \int_0^\pi p(\theta, \phi) P_0(Q,\alpha) \sin \theta\ d\theta
88
89
90where $p(\theta,\phi)$ is the probability distribution for the orientation
91and $P_0(Q,\alpha)$ is the scattering intensity for the fully oriented
92system. Since we have no other software to compare the implementation of
93the intensity for fully oriented cylinders, we can compare the result of
94averaging our 2D output using a uniform distribution $p(\theta, \phi) = 1.0$.
95:num:`Figure #cylinder-crosscheck` shows the result of
96such a cross-check.
97
98.. _cylinder-crosscheck:
99
100.. figure:: img/cylinder_crosscheck.jpg
101
102    Comparison of the intensity for uniformly distributed cylinders
103    calculated from our 2D model and the intensity from the NIST SANS
104    analysis software.
105    The parameters used were: *scale* = 1.0, *radius* = 20 |Ang|,
106    *length* = 400 |Ang|, *contrast* = 3e-6 |Ang^-2|, and
107    *background* = 0.0 |cm^-1|.
108"""
109
110from numpy import pi, inf
111
112name = "cylinder"
113title = "Right circular cylinder with uniform scattering length density."
114description = """
115     P(q)= 2*(sld - solvent_sld)*V*sin(qLcos(alpha/2))
116            /[qLcos(alpha/2)]*J1(qRsin(alpha/2))/[qRsin(alpha)]
117
118            P(q,alpha)= scale/V*f(q)^(2)+background
119            V: Volume of the cylinder
120            R: Radius of the cylinder
121            L: Length of the cylinder
122            J1: The bessel function
123            alpha: angle between the axis of the
124            cylinder and the q-vector for 1D
125            :the ouput is P(q)=scale/V*integral
126            from pi/2 to zero of...
127            f(q)^(2)*sin(alpha)*dalpha + background
128"""
129
130parameters = [
131#   [ "name", "units", default, [lower, upper], "type",
132#     "description" ],
133    [ "sld", "1e-6/Ang^2", 4, [-inf,inf], "",
134      "Cylinder scattering length density" ],
135    [ "solvent_sld", "1e-6/Ang^2", 1, [-inf,inf], "",
136      "Solvent scattering length density" ],
137    [ "radius", "Ang",  20, [0, inf], "volume",
138      "Cylinder radius" ],
139    [ "length", "Ang",  400, [0, inf], "volume",
140      "Cylinder length" ],
141    [ "theta", "degrees", 60, [-inf, inf], "orientation",
142      "In plane angle" ],
143    [ "phi", "degrees", 60, [-inf, inf], "orientation",
144      "Out of plane angle" ],
145    ]
146
147source = [ "lib/J1.c", "lib/gauss76.c", "cylinder.c" ]
148
149def ER(radius, length):
150    ddd = 0.75*radius*(2*radius*length + (length+radius)*(length+pi*radius))
151    return 0.5 * (ddd)**(1./3.)
152
153# parameters for demo
154demo = dict(
155    scale=1, background=0,
156    sld=6, solvent_sld=1,
157    #radius=5, length=20,
158    radius=260, length=290,
159    theta=30, phi=0,
160    radius_pd=.2, radius_pd_n=9,
161    length_pd=.2,length_pd_n=10,
162    theta_pd=15, theta_pd_n=45,
163    phi_pd=15, phi_pd_n=1,
164    )
165
166# For testing against the old sasview models, include the converted parameter
167# names and the target sasview model name.
168oldname='CylinderModel'
169oldpars=dict(theta='cyl_theta', phi='cyl_phi', sld='sldCyl', solvent_sld='sldSolv')
170
Note: See TracBrowser for help on using the repository browser.