source: sasmodels/sasmodels/models/cylinder.py @ 40a87fa

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 40a87fa was 40a87fa, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

lint and latex cleanup

  • Property mode set to 100644
File size: 5.0 KB
Line 
1# cylinder model
2# Note: model title and parameter table are inserted automatically
3r"""
4The form factor is normalized by the particle volume V = \piR^2L.
5
6Definition
7----------
8
9The output of the 2D scattering intensity function for oriented cylinders is
10given by (Guinier, 1955)
11
12.. math::
13
14    P(q,\alpha) = \frac{\text{scale}}{V} F^2(q) + \text{background}
15
16where
17
18.. math::
19
20    F(q) = 2 (\Delta \rho) V
21           \frac{\sin \left(\tfrac12 qL\cos\alpha \right)}
22                {\tfrac12 qL \cos \alpha}
23           \frac{J_1 \left(q R \sin \alpha\right)}{q R \sin \alpha}
24
25and $\alpha$ is the angle between the axis of the cylinder and $\vec q$, $V$
26is the volume of the cylinder, $L$ is the length of the cylinder, $R$ is the
27radius of the cylinder, and $\Delta\rho$ (contrast) is the scattering length
28density difference between the scatterer and the solvent. $J_1$ is the
29first order Bessel function.
30
31To provide easy access to the orientation of the cylinder, we define the
32axis of the cylinder using two angles $\theta$ and $\phi$. Those angles
33are defined in :numref:`cylinder-angle-definition`.
34
35.. _cylinder-angle-definition:
36
37.. figure:: img/cylinder_angle_definition.jpg
38
39    Definition of the angles for oriented cylinders.
40
41.. figure:: img/cylinder_angle_projection.jpg
42
43    Examples of the angles for oriented cylinders against the detector plane.
44
45NB: The 2nd virial coefficient of the cylinder is calculated based on the
46radius and length values, and used as the effective radius for $S(q)$
47when $P(q) \cdot S(q)$ is applied.
48
49The output of the 1D scattering intensity function for randomly oriented
50cylinders is then given by
51
52.. math::
53
54    P(q) = \frac{\text{scale}}{V}
55        \int_0^{\pi/2} F^2(q,\alpha) \sin \alpha\ d\alpha + \text{background}
56
57The $\theta$ and $\phi$ parameters are not used for the 1D output.
58
59Validation
60----------
61
62Validation of the code was done by comparing the output of the 1D model
63to the output of the software provided by the NIST (Kline, 2006).
64The implementation of the intensity for fully oriented cylinders was done
65by averaging over a uniform distribution of orientations using
66
67.. math::
68
69    P(q) = \int_0^{\pi/2} d\phi
70        \int_0^\pi p(\theta, \phi) P_0(q,\alpha) \sin \theta\ d\theta
71
72
73where $p(\theta,\phi)$ is the probability distribution for the orientation
74and $P_0(q,\alpha)$ is the scattering intensity for the fully oriented
75system, and then comparing to the 1D result.
76
77References
78----------
79
80None
81
82"""
83
84import numpy as np  # type: ignore
85from numpy import pi, inf  # type: ignore
86
87name = "cylinder"
88title = "Right circular cylinder with uniform scattering length density."
89description = """
90     f(q,alpha) = 2*(sld - sld_solvent)*V*sin(qLcos(alpha)/2))
91                /[qLcos(alpha)/2]*J1(qRsin(alpha))/[qRsin(alpha)]
92
93            P(q,alpha)= scale/V*f(q,alpha)^(2)+background
94            V: Volume of the cylinder
95            R: Radius of the cylinder
96            L: Length of the cylinder
97            J1: The bessel function
98            alpha: angle between the axis of the
99            cylinder and the q-vector for 1D
100            :the ouput is P(q)=scale/V*integral
101            from pi/2 to zero of...
102            f(q,alpha)^(2)*sin(alpha)*dalpha + background
103"""
104category = "shape:cylinder"
105
106#             [ "name", "units", default, [lower, upper], "type", "description"],
107parameters = [["sld", "4e-6/Ang^2", 4, [-inf, inf], "sld",
108               "Cylinder scattering length density"],
109              ["sld_solvent", "1e-6/Ang^2", 1, [-inf, inf], "sld",
110               "Solvent scattering length density"],
111              ["radius", "Ang", 20, [0, inf], "volume",
112               "Cylinder radius"],
113              ["length", "Ang", 400, [0, inf], "volume",
114               "Cylinder length"],
115              ["theta", "degrees", 60, [-inf, inf], "orientation",
116               "In plane angle"],
117              ["phi", "degrees", 60, [-inf, inf], "orientation",
118               "Out of plane angle"],
119             ]
120
121source = ["lib/polevl.c", "lib/sas_J1.c", "lib/gauss76.c", "cylinder.c"]
122
123def ER(radius, length):
124    """
125        Return equivalent radius (ER)
126    """
127    ddd = 0.75 * radius * (2 * radius * length + (length + radius) * (length + pi * radius))
128    return 0.5 * (ddd) ** (1. / 3.)
129
130# parameters for demo
131demo = dict(scale=1, background=0,
132            sld=6, sld_solvent=1,
133            radius=20, length=300,
134            theta=60, phi=60,
135            radius_pd=.2, radius_pd_n=9,
136            length_pd=.2, length_pd_n=10,
137            theta_pd=10, theta_pd_n=5,
138            phi_pd=10, phi_pd_n=5)
139
140qx, qy = 0.2 * np.cos(2.5), 0.2 * np.sin(2.5)
141tests = [[{}, 0.2, 0.042761386790780453],
142         [{}, [0.2], [0.042761386790780453]],
143         [{'theta':10.0, 'phi':10.0}, (qx, qy), 0.03514647218513852],
144         [{'theta':10.0, 'phi':10.0}, [(qx, qy)], [0.03514647218513852]],
145        ]
146del qx, qy  # not necessary to delete, but cleaner
147# ADDED by:  RKH  ON: 18Mar2016 renamed sld's etc
Note: See TracBrowser for help on using the repository browser.