double form_volume(double radius, double length); double fq(double q, double sn, double cn,double radius, double length); double orient_avg_1D(double q, double radius, double length); double Iq(double q, double sld, double solvent_sld, double radius, double length); double Iqxy(double qx, double qy, double sld, double solvent_sld, double radius, double length, double theta, double phi); #define INVALID(v) (v.radius<0 || v.length<0) double form_volume(double radius, double length) { return M_PI*radius*radius*length; } double fq(double q, double sn, double cn, double radius, double length) { // precompute qr and qh to save time in the loop const double qr = q*radius; const double qh = q*0.5*length; return sas_2J1x_x(qr*sn) * sas_sinx_x(qh*cn); } double orient_avg_1D(double q, double radius, double length) { // translate a point in [-1,1] to a point in [0, pi/2] const double zm = M_PI_4; const double zb = M_PI_4; double total = 0.0; for (int i=0; i<76 ;i++) { const double alpha = Gauss76Z[i]*zm + zb; double sn, cn; // slots to hold sincos function output // alpha(theta,phi) the projection of the cylinder on the detector plane SINCOS(alpha, sn, cn); total += Gauss76Wt[i] * square( fq(q, sn, cn, radius, length) ) * sn; } // translate dx in [-1,1] to dx in [lower,upper] return total*zm; } double Iq(double q, double sld, double solvent_sld, double radius, double length) { const double s = (sld - solvent_sld) * form_volume(radius, length); return 1.0e-4 * s * s * orient_avg_1D(q, radius, length); } double Iqxy(double qx, double qy, double sld, double solvent_sld, double radius, double length, double theta, double phi) { double q, sin_alpha, cos_alpha; ORIENT_SYMMETRIC(qx, qy, theta, phi, q, sin_alpha, cos_alpha); //printf("sn: %g cn: %g\n", sin_alpha, cos_alpha); const double s = (sld-solvent_sld) * form_volume(radius, length); const double form = fq(q, sin_alpha, cos_alpha, radius, length); return 1.0e-4 * square(s * form); }