#correlation length model # Note: model title and parameter table are inserted automatically r""" Definition ---------- The scattering intensity I(q) is calculated as .. math:: I(Q) = \frac{A}{Q^n} + \frac{C}{1 + (Q\xi)^m} + \text{background} The first term describes Porod scattering from clusters (exponent = $n$) and the second term is a Lorentzian function describing scattering from polymer chains (exponent = $m$). This second term characterizes the polymer/solvent interactions and therefore the thermodynamics. The two multiplicative factors $A$ and $C$, and the two exponents $n$ and $m$ are used as fitting parameters. (Respectively *porod_scale*, *lorentz_scale*, *porod_exp* and *lorentz_exp* in the parameter list.) The remaining parameter $\xi$ (*cor_length* in the parameter list) is a correlation length for the polymer chains. Note that when $m=2$ this functional form becomes the familiar Lorentzian function. Some interpretation of the values of $A$ and $C$ may be possible depending on the values of $m$ and $n$. For 2D data: The 2D scattering intensity is calculated in the same way as 1D, where the q vector is defined as .. math:: q = \sqrt{q_x^2 + q_y^2} References ---------- B Hammouda, D L Ho and S R Kline, Insight into Clustering in Poly(ethylene oxide) Solutions, Macromolecules, 37 (2004) 6932-6937 """ from numpy import inf, errstate name = "correlation_length" title = """Calculates an empirical functional form for SAS data characterized by a low-Q signal and a high-Q signal.""" description = """ """ category = "shape-independent" # pylint: disable=bad-continuation, line-too-long # ["name", "units", default, [lower, upper], "type","description"], parameters = [ ["lorentz_scale", "", 10.0, [0, inf], "", "Lorentzian Scaling Factor"], ["porod_scale", "", 1e-06, [0, inf], "", "Porod Scaling Factor"], ["cor_length", "Ang", 50.0, [0, inf], "", "Correlation length, xi, in Lorentzian"], ["porod_exp", "", 3.0, [0, inf], "", "Porod Exponent, n, in q^-n"], ["lorentz_exp", "1/Ang^2", 2.0, [0, inf], "", "Lorentzian Exponent, m, in 1/( 1 + (q.xi)^m)"], ] # pylint: enable=bad-continuation, line-too-long def Iq(q, lorentz_scale, porod_scale, cor_length, porod_exp, lorentz_exp): """ 1D calculation of the Correlation length model """ with errstate(divide='ignore'): porod = porod_scale / q**porod_exp lorentz = lorentz_scale / (1.0 + (q * cor_length)**lorentz_exp) inten = porod + lorentz return inten Iq.vectorized = True # parameters for demo demo = dict(lorentz_scale=10.0, porod_scale=1.0e-06, cor_length=50.0, porod_exp=3.0, lorentz_exp=2.0, background=0.1, ) tests = [[{}, 0.001, 1009.98], [{}, 0.150141, 0.175645], [{}, 0.442528, 0.0213957]]