source: sasmodels/sasmodels/models/core_shell_sphere.py @ 0507e09

core_shell_microgelsmagnetic_modelticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 0507e09 was 0507e09, checked in by smk78, 5 years ago

Added link to source code to each model. Closes #883

  • Property mode set to 100644
File size: 4.2 KB
RevLine 
[edc9f8d]1r"""
[55b2b232]2.. _core_shell_sphere:
3
[40a87fa]4This model provides the form factor, $P(q)$, for a spherical particle with
5a core-shell structure. The form factor is normalized by the particle volume.
[edc9f8d]6
[9f60c06]7For information about polarised and magnetic scattering, see
[9a4811a]8the :ref:`magnetism` documentation.
[9f60c06]9
[edc9f8d]10Definition
11----------
12
13The 1D scattering intensity is calculated in the following way (Guinier, 1955)
14
15.. math::
16
17    P(q) = \frac{\text{scale}}{V} F^2(q) + \text{background}
18
19where
20
21.. math::
[fa8011eb]22
[dc76240]23    F(q) = \frac{3}{V_s}\left[
[40a87fa]24       V_c(\rho_c-\rho_s)\frac{\sin(qr_c)-qr_c\cos(qr_c)}{(qr_c)^3} +
25       V_s(\rho_s-\rho_\text{solv})\frac{\sin(qr_s)-qr_s\cos(qr_s)}{(qr_s)^3}
26       \right]
[8c9dbc9]27
[40a87fa]28where $V_s$ is the volume of the whole particle, $V_c$ is the volume of the
29core, $r_s$ = $radius$ + $thickness$ is the radius of the particle, $r_c$
30is the radius of the core, $\rho_c$ is the scattering length density of the
31core, $\rho_s$ is the scattering length density of the shell,
32$\rho_\text{solv}$, is the scattering length density of the solvent.
[edc9f8d]33
34The 2D scattering intensity is the same as $P(q)$ above, regardless of the
35orientation of the $q$ vector.
36
37NB: The outer most radius (ie, = radius + thickness) is used as the
38effective radius for $S(Q)$ when $P(Q) \cdot S(Q)$ is applied.
39
40Validation
41----------
42
[40a87fa]43Validation of our code was done by comparing the output of the 1D model to
44the output of the software provided by NIST (Kline, 2006). Figure 1 shows a
45comparison of the output of our model and the output of the NIST software.
[0507e09]46
47References
48----------
49
50.. [#] A Guinier and G Fournet, *Small-Angle Scattering of X-Rays*, John Wiley and Sons, New York, (1955)
51
52Source
53------
54
55`core_shell_sphere.py <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/core_shell_sphere.py>`_
56
57`core_shell_sphere.c <https://github.com/SasView/sasmodels/blob/master/sasmodels/models/core_shell_sphere.c>`_
58
59Authorship and Verification
60----------------------------
61
62* **Author:**
63* **Last Modified by:**
64* **Last Reviewed by:**
65* **Source added by :** Steve King **Date:** March 25, 2019
[edc9f8d]66"""
67
[2d81cfe]68import numpy as np
[edc9f8d]69from numpy import pi, inf
70
71name = "core_shell_sphere"
72title = "Form factor for a monodisperse spherical particle with particle with a core-shell structure."
73description = """
[c036ddb]74    F(q) = [V_c (sld_core-sld_shell) 3 (sin(q*radius)-q*radius*cos(q*radius))/(q*radius)^3
75            + V_s (sld_shell-sld_solvent) 3 (sin(q*r_s)-q*r_s*cos(q*r_s))/(q*r_s)^3]
[edc9f8d]76
77            V_s: Volume of the sphere shell
78            V_c: Volume of the sphere core
79            r_s: Shell radius = radius + thickness
80"""
81category = "shape:sphere"
82
83# pylint: disable=bad-whitespace, line-too-long
84#             ["name", "units", default, [lower, upper], "type","description"],
85parameters = [["radius",      "Ang",        60.0, [0, inf],    "volume", "Sphere core radius"],
86              ["thickness",   "Ang",        10.0, [0, inf],    "volume", "Sphere shell thickness"],
[42356c8]87              ["sld_core",    "1e-6/Ang^2", 1.0,  [-inf, inf], "sld",    "core scattering length density"],
88              ["sld_shell",   "1e-6/Ang^2", 2.0,  [-inf, inf], "sld",    "shell scattering length density"],
89              ["sld_solvent", "1e-6/Ang^2", 3.0,  [-inf, inf], "sld",    "Solvent scattering length density"]]
[edc9f8d]90# pylint: enable=bad-whitespace, line-too-long
91
[925ad6e]92source = ["lib/sas_3j1x_x.c", "lib/core_shell.c", "core_shell_sphere.c"]
[71b751d]93have_Fq = True
[d277229]94effective_radius_type = ["outer radius", "core radius"]
[edc9f8d]95
96demo = dict(scale=1, background=0, radius=60, thickness=10,
[3556ad7]97            sld_core=1.0, sld_shell=2.0, sld_solvent=0.0)
[edc9f8d]98
[d49ca5c]99def random():
[b297ba9]100    """Return a random parameter set for the model."""
[8f04da4]101    outer_radius = 10**np.random.uniform(1.3, 4.3)
102    # Use a distribution with a preference for thin shell or thin core
103    # Avoid core,shell radii < 1
104    radius = np.random.beta(0.5, 0.5)*(outer_radius-2) + 1
[9f6823b]105    thickness = outer_radius - radius
[d49ca5c]106    pars = dict(
107        radius=radius,
108        thickness=thickness,
109    )
110    return pars
111
[40a87fa]112tests = [
[304c775]113    [{'radius': 20.0, 'thickness': 10.0}, 0.1, None, None, 30.0, 4.*pi/3*30**3, 1.0],
[8f04da4]114
115    # The SasView test result was 0.00169, with a background of 0.001
116    [{'radius': 60.0, 'thickness': 10.0, 'sld_core': 1.0, 'sld_shell': 2.0,
117      'sld_solvent': 3.0, 'background': 0.0}, 0.4, 0.000698838],
[40a87fa]118]
Note: See TracBrowser for help on using the repository browser.